Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
SDP201800047 Calculations Minor Amendment 2018-09-21
Prepared for: SrollIP Dominion Orr Energy- 10900 Nuckols Road Glen Allen, Virginia 23060 Gordonsville Substation Expansion Geotechnical Investigation and Slope Stability Analysis Albemarle County, Virginia Project Number: MV1470 Prepared by: Geosyntec '` consultants p 9211 Arboretum Parkway Richmond, Virginia 23236 U Christopher Michael Lynch 5 •e Lk.No.OSSO$I 15L1 9 a 1- 1o,( �W� September 2018 �4:tiONAL 04- a COMPUTATION COVER SHEET Client: Dominion Project: Gordonsville Substation Expansion Project No.: MV1470 Task No. 09 Title of Computations Geotechnical Investigation and Slope Stability Analysis Computations by: 21 September 2018 Christopher Lynch,P.E.(VA) Date Project Engineer Assumptions and �/ Procedures Checked G/�� 21 September 2018 by: Katherine Warwick,P.E.(VA) Date (peer reviewer) Engineer Computations � Checked by: <�� 21 September 2018 Katherine Warwick,P.E.(VA) Date Engineer Computations backchecked by: (originator) 21 September 2018 Christopher Lynch,P.E.(VA) Date Project Engineer Approved by: (PM or designate) 21 September 2018 Kyle LaClair,P.E.(VA) Date Principal Approval notes: Revisions(number and initial all revisions) No. Sheet Date By Checked by Approval Geotechnical Investigation and Slope Stability Analysis Geosyntec'D Gordonsville Substation Expansion consultants Project Number MV1470 TABLE OF CONTENTS 1.0 INTRODUCTION 1 2.0 BACKGROUND AND PURPOSE 1 3.0 SITE DESCRIPTION 1 3.1 SITE LOCATION 1 3.2 REGIONAL AND LOCAL GEOLOGY 2 4.0 EXPLORATION PROGRAM 2 4.1 INTRODUCTION 2 4.2 HISTORICAL SUBSURFACE INFORMATION 3 4.3 DRILLING AND SAMPLING PROCEDURES 3 5.0 SUBSURFACE CONDITIONS 3 5.1 INTRODUCTION 3 5.2 SOIL STRATIGRAPHY 3 5.3 GROUNDWATER CONDITIONS 4 6.0 DESIGN ANALYSIS 4 7.0 CONCLUSION AND RECOMMENDATIONS 6 8.0 CLOSING 7 Gordonsville Substation Slope Stability(Final 2018-09-21).docx Geotechnical Investigation and Slope Stability Analysis Geosyntec'D Gordonsville Substation Expansion consultants Project Number MV1470 LIST OF TABLES Table A1—Summary of SPT Results LIST OF FIGURES Figure 1—Boring Location Plan Figure 2—Site Geologic Map LIST OF APPENDICES Appendix A—Boring Logs Appendix B—Historical Boring Location Plan and Boring Logs Appendix C—Virginia Department of Transportation,Soil Design Parameters for Sound Barrier Walls, Retaining Walls and Non-Critical Slopes—April 14, 2011. Appendix D—SLIDE Output Files Gordonsville Substation Slope Stability(Final 2018-09-21).docx II Geotechnical Investigation and Slope Stability Analysis Geosyntec 0 Gordonsville Substation Expansion consultants Project Number MV1470 1.0 INTRODUCTION This report was prepared by Geosyntec Consultants, Inc. (Geosyntec)for Dominion Energy (Dominion) to provide supporting documentation for the Gordonsville Substation Expansion in Albemarle County, Virginia. This report is provided in accordance with the terms and conditions executed under a Master Service Agreement No. 50109991 (Geosyntec Project Number MV1470). This report provides descriptions of the geotechnical drilling and sampling procedures, description of the subsurface conditions encountered, and the results of a slope stability analysis performed for the proposed expansion. The recommendations provided in this report are based on data collected from a limited number of samples at the locations described herein. The materials encountered are typical of a developed site and should not be considered to be homogenous or consistent across the site. This data should only be considered generally indicative of conditions that may be encountered at the locations of the borings performed. The coordinate system used in this report is Virginia State Plane North Zone, North American Datum of 1983 (NAD83). The datum for elevations is North American Vertical Datum of 1988 (NAVD88) and are referenced to mean sea level (MSL). This report is presented using US customary system units, where length is described in feet(ft), miles(mi),and inches(in),stresses and pressures in pounds per square feet (psf), and unit weight in pounds per cubic feet (pcf). 2.0 BACKGROUND AND PURPOSE The proposed expansion of the Gordonsville Substation includes a 1.5H:1.0V constructed slope along the northeastern limits of the substation. According to the Albemarle County Design Standards Manual dated 27 April 2015, "constructed slopes steeper than 2:1 must have a waiver from the county engineer. Requests for waiver should include demonstrable hardship, and provisions for permanent stabilization and structural stability." To address the matters of permanent stabilization and structural stability, the geotechnical investigation and slope stability analysis described herein were completed in the vicinity of the proposed steep slope. 3.0 SITE DESCRIPTION 3.1 SITE LOCATION The entrance to the proposed Gordonsville Substation Expansion located approximately 700 feet west of the intersection of Route 646 (Lovers Lane) and Route 231 (Gordonsville Road), and approximately 2.5 miles southwest of Gordonsville,Virginia. Gordonsville Substation Slope Stability(Final 2018-09-21).docx 1 Geotechnical Investigation and Slope Stability Analysis Geosyntec D Gordonsville Substation Expansion consultants Project Number MV1470 3.2 REGIONAL AND LOCAL GEOLOGY The Site Geologic Map provided as Figure 2 shows the geological formations mapped at the site location. Geologic units and descriptions included in Figure 2 were taken from the Geologic Map of Albemarle County,Virginia (1962) published by the Virginia Department of Conservation and Development, Division of Mineral Resources. As shown, the mapping indicates that the project site is underlain by the Catoctin Formation (primarily greenstone) and the Loudoun Formation (primarily sandstone) and lies within the Piedmont physiographic province. 4.0 EXPLORATION PROGRAM 4.1 INTRODUCTION Geosyntec contracted Triad Engineering Inc. to conduct geotechnical drilling and sampling at the proposed expansion site. The geotechnical site investigation consisted of four borings advanced to depths of 4.9 ft and 30.0 ft below ground surface (bgs). The borings were completed in one mobilization with drilling completed on 30 August 2018. Borings GS-1 and GS-2 were located along the top of the existing slope in the vicinity of the steep slope expansion, and borings GS-3 and GS-4 were located along the toe of the slope, adjacent to the existing substation. All four borings were performed for the purpose of evaluating slope stability of the proposed slope. Table 1 presents the coordinates of each boring location, together with elevations and termination depths. The as-built coordinates and elevations are approximate values.The coordinates were recorded using GPS applications on mobile devices, and the elevations were estimated using existing site topography. Figure 1 shows both existing and proposed contours for the project. Table 1—Coordinates of Boring Locations Coordinates—Virginia State Plane Existing Ground Boring ID North Zone, NAD83(1) Surface Elevation Final Depth (MSL-ft) (ft bgs) Northing(ft) Easting(ft) GS-1 6729407 11563141 517.5 30.0 • GS-2 6729329 11563188 515.8 30.0 GS-3 6729418 11563198 506.6 18.2 GS-4 6729343 11563241 504.2 4.9 (1) The coordinates were surveyed using a GPS unit-Trimble Geo 7X. Horizontal precision after postprocessing ranged from 2.2 to 4.3 ft for all borings. 4.2 HISTORICAL SUBSURFACE INFORMATION Test borings included in Appendix B were performed by H&E Corporation in 1983 within the interior of the then-proposed Gordonsville Substation. While not located in the immediate vicinity of the proposed Gordonsville Substation Slope Stability(Final 2018-09-21).docx 2 Geotechnical Investigation and Slope Stability Analysis Geosyntec'' Gordonsville Substation Expansion consultants Project Number MV1470 steep slope, these historical test borings were reviewed prior to our geotechnical investigation and are included as an appendix to this report for reference. 4.3 DRILLING AND SAMPLING PROCEDURES A track-mounted CME-55 drill rig was used to advance a 6-in. diameter geotechnical soil boring to the termination depth via hollow stem auger methods. Soil samples were obtained using a split-spoon sampler of length of 24 inches, in accordance with ASTM D1586,continuously from the ground surface to 10 ft bgs, and at 5-foot intervals thereafter until termination. The soil penetration resistance was measured at all sample depths using the Standard Penetration Test (SPT). Each split-spoon sample was advanced 24 inches or prior refusal, and blow counts were recorded over each 6-in. interval. The SPT N-value is the number of blows required for a 140-lb hammer dropping 30 inches,to drive the split-spoon sampler through the middle 12-inch interval of the 24-inch sample penetration. The SPT N-values are presented in the boring logs. The Geosyntec field representative prepared descriptions of each soil sample using visual-manual methods according to ASTM D2488 and placed the samples in individual sealed containers, labeled, and stored for transport to Geosyntec's office. The observations of our field representative were recorded on the field boring logs as the drilling operations progressed. After completion, each boring was backfilled with auger cuttings. 5.0 SUBSURFACE CONDITIONS 5.1 INTRODUCTION The soil stratigraphy at the site is based on our field representatives' observations made during drilling operations and field classifications of soil samples recovered from the soil borings. The soil stratigraphy, including details of soil descriptions such as color and inclusions, is presented on the boring logs(Appendix A). Soil stratigraphy presented in this report corresponds to soil conditions at the location of the borings and can be extrapolated with confidence to the area in close vicinity of the boring locations. However, subsurface conditions described herein do not necessarily represent conditions across the entire site. Extrapolations should be made with consideration of this limitation. 5.2 SOIL STRATIGRAPHY Table 2 provides a summary of the stratigraphy encountered for each boring, including both a generalized stratum description, as well as a corresponding stratum and substratum descriptions from the VDOT Soil Design Parameters reference provided in Appendix C. Weathered rock materials recovered appeared to be more representative of the Loudon Formation than of the Catoctin Formation shown underlying the site on the geologic map referenced. Gordonsville Substation Slope Stability(Final 2018-09-21).docx 3 r Geotechnical Investigation and Slope Stability Analysis Geosyntec p Gordonsville Substation Expansion consultants Project Number MV1470 Table 2-Soil Stratigraphy Boring Depth(ft) Elevation(ft) Generalized VDOT Stratum and Sub-Stratum ID Top Bottom Top Bottom Stratum Ill L 0 14.0 517.5 503.5 Existing Fill I-B-Upper Zone/Soil GS-1 14.0 18.0 503.5 499.5 Residual Soil II-A-Saprolite 18.0 -- 499.5 -- Weathered Rock III-Decomposed/Weathered Rock 0 13.2 515.8 502.6 Existing Fill I-B-Upper Zone/Soil GS-2 13.2 18.0 502.6 497.8 Residual Soil II-A-Saprolite 18.0 -- 497.8 -- Weathered Rock III-Decomposed/Weathered Rock 0 2.5 506.6 504.1 Existing Fill I-B-Upper Zone/Soil GS-3 2.5 6.0 504.1 500.6 Residual Soil II-A-Saprolite 6.0 -- 500.6 -- Weathered Rock Ill-Decomposed/Weathered Rock 0 1.3 504.2 502.9 Existing Fill I-B-Upper Zone/Soil GS-4 1.3 2.0 502.9 502.2 Residual Soil II-A-Saprolite 2.0 -- 502.2 -- Weathered Rock III-Decomposed/Weathered Rock (1) Represents the corresponding stratum and sub-stratum under the Piedmont Physiographic Province, as provided in Appendix C. 5.3 GROUNDWATER CONDITIONS Groundwater was not encountered within any of the four borings at the time of drilling. It should be noted that groundwater levels may change over time or with changes to site topography and can vary with seasonal rainfall patterns, long-term climate fluctuations and with the influence of local site conditions, such as drainage patterns. 6.0 DESIGN ANALYSIS Geotechnical design parameters (e.g. soil unit weight and shear strength, groundwater elevation and subsurface stratigraphy) used in the analyses contained herein were based upon the results of our geotechnical investigation, and presumptive values. Due to an accelerated design schedule for the expansion project, and considering the results of our investigation, no laboratory testing was performed for recovered samples. The proposed steep slope was evaluated for global stability under drained, static conditions. Table 3 provides a summary of the geotechnical design parameters utilized for the analyses contained herein. Riprap classification used in this report correspond to those Virginia Department of Transportation(VDOT) Drainage Manual,Appendix 7D-3. Table 3-Geotechnical Design Parameter Summary Gordonsville Substation Slope Stability(Final 2018-09-21).docx 4 Geotechnical Investigation and Slope Stability Analysis Geosyntec u Gordonsville Substation Expansion consultants Project Number MV1470 Drained Angle of Unit Weight,y Internal Friction, Effective Generalized Stratum (Ib/ft3) Cohesion,c (psf) (degrees) Existing Fill 110 20 0 Proposed Structural Fill 120 30 0 Residual Soil 100 28 0 Weathered Rock 120 34 0 VDOT Class 1 Riprap and 110 45 0 #57 Stone Values shown in Table 3 for existing fill, residual soil, and weathered rock generally correspond to those listed in the VDOT Soil Design Parameters reference provided in Appendix C for the associated VDOT Stratum and Sub-Stratum shown in Table 2. Values for cohesion were neglected for the slope stability analysis based on the potential for partial saturation of embankment materials during the life of the project. The stability of the selected cross sections were evaluated based on limit equilibrium theory using the method of slices. The computer program SLIDE 8.016 (Rocscience 2018) was used to perform the analyses. SLIDE is a two-dimensional slope stability program for evaluating the factor of safety of circular and non-circular failure surfaces in soils. The procedure consisted of analyzing numerous potential failure surfaces for each cross section to find the critical failure surface that renders the minimum factor of safety for the slope. Spencer's limit equilibrium slope stability analysis was the chosen analysis method. This method satisfies force and moment equilibrium. Numerous potential failure planes were analyzed to find the critical failure plane that would result in the minimum factor of safety for the slope. A non-circular, auto refine search failure mechanism was evaluated during slope stability analyses. A description of this failure search mechanism is described by Rocscience as follows: "The Auto Refine Search option for Non-Circular surfaces is based on the Auto Refine Search option for Circular surfaces, with an additional step which converts the circular surfaces into piece-wise linear surfaces.This works as follows: 1. The Auto Refine Search for Non-Circular surfaces first generates circular surfaces, using the algorithm described for the Auto Refine (Circular) search. Gordonsville Substation Slope Stability(Final 2018-09-21).docx 5 Geotechnical Investigation and Slope Stability Analysis Geosyntec'% Gordonsville Substation Expansion consultants Project Number MV1470 2. Each circle is converted into a non-circular (piece-wise linear) surface using the Number of vertices along surface (see below) and the safety factor is calculated for the non-circular surface. 3. The slip surface with the lowest safety factor is determined using the algorithm described for the Auto Refine (Circular) search." Slope stability was evaluated under long term (drained, effective stress) static conditions. For drained conditions, effective strength parameters were used. A uniform surcharge load of 250 psf was applied across a 14-ft width of the top of the proposed slope, corresponding to vehicular loading that may be experienced along the proposed access road that the top of the slope. The proposed slope expansion design is shown in the slope stability cross section provided in Appendix D. The design includes a finished slope grade of 1.5H:1.0V, with a 2-ft deep Class 1 riprap facing. To meet target minimum factors of safety, the recommended design includes the following: • Class 1 riprap toe embedment extended to the top of the weathered rock stratum, at elevation 500 ft. For locations where top of rock may be encountered above an elevation of 500 ft, riprap toe embedment should be a minimum of 4 ft below finished grades at the toe of the slope. • A zone of AASHTO #57 stone backfill is included between the proposed riprap zone to a line extending downslope at a 1.0H:1.0V slope from an 8-ft setback from the top of the proposed slope, to the elevation of the bottom of the riprap toe embedment. Target and calculated global stability factors of safety are provided in Table 4, and results of the analyses can be found in Appendix D. Target minimum factors of safety are based on standard practice for the type of proposed construction. Table 4—Global Stability Summary Target Calculated Case Minimum Factor Minimum Factor of Safety of Safety Recommended Design 1.5 1.563 7.0 CONCLUSION AND RECOMMENDATIONS The proposed slope expansion has been evaluated for slope stability based on the recommended design, and has been found to have an acceptable factor of safety. Class 1 riprap shown in the alternate/recommended design may be replaced with Class Al riprap without any anticipated reduction in slope stability. Additional recommendations related to the alternative/recommended design include: • Installation of a 10 oz/SY non-woven geotextile underlayment beneath the#57 stone backfill and riprap. Gordonsville Substation Slope Stability(Final 2018-09-21).docx 6 • Geotechnical Investigation and Slope Stability Analysis Geosyntec° Gordonsville Substation Expansion consultants Project Number MV1470 • #57 stone backfill should be compacted with a minimum of one pass of a smooth-drum,vibratory roller. • Riprap should be densely placed in accordance with VDOT standards and specifications. • Benching of existing slopes should be performed in accordance with Dominion Substation specifications. Benching is not shown in the cross sections presented in this report for simplicity. • Installation of impermeable geomembrane liner beneath stormwater ditches along the top of the proposed slope to prevent infiltration and stormwater runoff from entering the proposed slope. 8.0 CLOSING Geosyntec is pleased to provide Dominion with the geotechnical investigation and slope stability analysis results for the proposed Gordonsville Substation Expansion. Please contact Kyle LaClair at 804.665.2812 and/or Chris Lynch at 804.665.2821 with any questions regarding this report. Gordonsville Substation Slope Stability(Final 2018-09-21).docx 7 Tables 2 o ,,. = n . . . n . n n n n n n n . . n n n n n n n n n n . n 2 k" cn cn cn cn v: cn cn cn cn cn cn cn cn cn cn cn cn v: cn v cr v: cr cr cn cn cn c ; a a A W W W W W W N N N N N NJ NJ N NJ 3 C 3 i A N O W W 00 CAA N O 6t ,'2, 00 W 00 CAA N O W W W W 00 co, A N O + 7 .�. O O O O G O O O O O O O O O O O O O O O O O O O O O O O .,,. S C 7 w P A NJ O to O 00 P a N O tlNi O to O 00 cr. A N WO O to O W P A NJ ' O ^m O O O O O O O O O O O O O O O O O O O O O O O O O O O O .. T' e E s 3 I W - — o W t N N N to W N N to R. O O 6O O O O O O O O O O O O O O O O O O O O O O 0 9 6 S I z :: A LA LA A A A A A A A A A to '� F 'D O O 00 w '0 O O O O 00 tO t0 O O O — — — 00 tO t0 O O — — — — ,r, C (y to — W 00 00 O N A P J NJ A NJ J 00 — W to t0 A tO A tp — W to 1 CI .0 NJ r0 6 tO S. FG _ n V 1 a a GG CC CC CC 1 m 0 0 A a m P. 0 0 , m m m m m 0 0 0 z m P. m m m , d d X d N d N y H X G N it y X )f X % % U U N y X )f K K X m < t ' n R R n nn F G __ R !1 R C _ _ _ F. F. :i .SD R C _ _ _ _ N — = z 9 a a a a a a a "= w 00 a a a a d< 0- oe. o� a a a m 65 ac o; cr cr. c 3 o • �7 "n A .� A A c '''� o _n _n _n . ''. A 'A a _n "Ti. :n :n :n y 3 0 0 = o g 0 R _ _ = 0 0 0 _ 0 0 0 _ 'm m 3, iC it it is — is it• it — is �c- _ a m .e' 3 'o' a v: n m -el 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 KKKKK KKK ' crro r r r r r r r r r r r r r r S S S S r r r r r S T S r r _ . m o' a n n n n n n n n n n n n n n n n n n n n n n n n n n n n ? 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0'0 m m m m m m m m m m m m m m m m m m m m m m m m m m m m P LA LA lA sr! ,1 P 0 t to to to to to to to to LA u to to to to tr u to to to to to to to n • se) w .0 .0 .0 .0 .0 W .0 W .0 N0 .0 tO 4) tO SO w tO VD 4) � _ W W W W W W W CM tM Lb! L., W W La! W W W W lJ W W % A a tr r to to r o r LA to to to LA H to to to to LA tr to in to in to to to U to - 4 't 7 S to o t Nw 00 00 0 m P 0. 00 0 -..a 0, AWO DO O tOOO L. O V N 00 O OOJ re rref n a -72 W N N GEC 0'0 :O W tO O •0 J J '" N U P t0 N 00 DD C — t0 P 00 y N m . C re Figures IIIIIIITIIIIITITITIIIIIIITITITITII!IIIIIIIIIIIIIIIIIITITITNITITITHIIIII 0 1 2 3 4 5 ([ 7 8 9 10 11 12 VEPCO 100'R/W I LAWSON,ALBERT J ESTATE _ " '�' g "h PROPOSED CONDITIONS LEGEND — P'o•<e ESQ \ I 4D 0 �"woy`�i SYMBOL DESCRIPTION — // Ij. W -_ ?Noy I I 21A COMPACTED GRAVEL I \''< •57 STONE UNCOMPACTED GRAVEL — — _ __ � i/ \ .,..< —x—z—x— PROPOSED$UBSTATgN SECURITY FENCE /f/ i �\ \r7 35'RENt SETBACK LIVE \_ fe. —�-- PROPOSED MAJOR IS-FOOT INTERVAL/CONTOURS /y r II I °f ram \\ \ .Z� 0 \7 ii ® PROPOSED MINOR (1-FOOT INTERVAL/CONTOUR I / - - -T l _ _ \\ .- � \`� r.. .1/4.,,,......,,,,,, :z: r I. CATION _ .LEA: '�-+. 1,l \ r- - -108 1�.:. _mil I _I/ r `I, ��� 'Il•\,\ I )i, , • I \ — I �1 a I, i 1F _1 \ fl. + \ \ + I �— ' \ \ 7 I _ Ft i r e ? ��- I B _ i '1`III \ ENERGY i \\\\v \ i DISSIPAT OR \\\, —• I _ =e N 6729299.83 . ���. \ A V II' i/ SUBS7A ioN ` eiSEL - I \ I \\\ OB B I �32�5TE , O \ N. i �i . b n \ \ t {I • 11 FACILITY6)/1 — -r A _ ,_ ..S32.56`37•E .: It l mt $UBSTu1T. p BASELINE �. _��— I - .� ,.O _ �� EMERGENCY ;_� VEPCO 100'R/W <I°`/ ? e `R-•e`�Y-' % . I% De 517 Pg 572 I r� ` (Pa<ce iLl ----\----/ • 4 \\ 1, ,. ___ _ _ I :*„ -,----- 8N , ,. ....---- --- m ' � 3 .. ~ \n ; \ am -l/ J 'C 1 „ ivt--G-_•= 1r---, - \ _ — rr- G u \ �a — 5 yt_ \ \ VIRGINIA ELECTRIC & r \\ \\ ') \ \ \\I SCALE - "POWER COMPANY .\ \ \ `) \ - .. ../ ., eosyntec 0 40' BO' / /,.. ! -'lam / G ° — _ // N PLAN 2S•FRONT�BAG� 6077< W ote Route 646) _ / — I _ — — N` ` LOVERS LSE GORDONSVBDILLE SUBSTARING DT ON EXPANSION -14� jf _ - ALBEMARLE COUNTY.VIRGINIA d S — — -- - - - N . Dot. aejFel No. Sl OI No. d. i It ,_----.- D.•q•d w- m-2ST] b,a.•. Scot. 1 DF 1 0 1,40 S ror�•w B/Y N.. R.Ns.00s s, Revisions - I I I I I I I I I I - o Fpyty Coil.F•O typical Sv1.-.s St.l D .I& s••bly Cod FA.Nor. 66MBYBw°°" Ora•:°No t TYi•�e1 D.•.sn Llb.ryoa•to. Coll Non. B/N G+•.bly Pip.SUM Fany.t,on Coll.1►.. Pipe Stand Fp.d.s•m GII•TSP. I FIGURE 1 .o..•.uon I I I Gp.•w PLOTTED. ••••••F.M.s• e000 ee0yySE• <• - �" Geolo ie Ial) `_ I/ �:,, '` t / '•ki, ALBEMARLE COUNTY. VIRGINIA ‘-‘f : f� •• Geology by Wilbur A. Nelson I {• R • r ♦ t p' -,-)t° , i ‘ i ' SITE LOCATION 1962 . „ .1...... li ,.. . . .-,.... , . • If- sit, . .. - - 1 . ) . J ,..• VIRGINIA DEPARTMENT OF CONSERVATION AND DEVELOPMENT t, I e• I., { • ti--._ • �� DIVISION OF MINERAL RESOURCES ! James L. Calver, Commissioner of Mineral Resources �. ," • "*.) V Kiv , • - i 1 .o„-�a. • 1 t i. « '� and State Geologist %, ,,,c. f . , u„.., GoodklW Mtn• . ` ♦ • •.- ' I 4 4P/. r.. - • •- \,i i fir.•_+..A . ✓� • • y 1`. r.— .....S.,......',.. ..�r� 1 '! Loudoun formation ‘41i t r- _ - —� '• ! Vr•/ (Unicoi-Weverton) \ ;, Upper part sandstones, shaly sandstones t . // , ; and pink paper bedded shales, then micace- • \ • ous sandstone and glassy ferruginous sand- 1 ',�� }( stone then, at base, three greenstone lava flows separated by coarse arkosic quartaitic • sandstone with a 10 foot conglomerate at • ,. •,� ' '•�, >, :,1 , boar and a 175 foot acid lava flow at top A. i i i \ ; \ \ '' `,.'!' '‘oic t j. 1 y \ 1 . : '/," ç ` ; \ 1) •tom ..x. . 1 j \ t Catoctin formation ,4 ``.� •.:5•.., ;'' • with alaskite dikes • ► Originally a series of basaltic lava flows ` ! ' `` separated by layers of sediments, now a f . ,,,,\. t 4 ;. } greenstone with patches of epidote. .% 8 Greenatone feeder dikes ezposed/,.\ % / j S Sandstone lens8'\ ' k 0. ,,..,. • • 1/' f SITE GEOLOGIC MAP GORDONSVILLE SUBSTATION EXPANSION ALBEMARLE COUNTY, VIRGINIA Geosyntec° %� Dominion FIGURE c'rn,c1litant, Energy 2 RICHMOND,VIRGINIA SEPTEMBER 2018 Appendix A Boring Logs GEOSYNTEC GEOTECH GEOS GORDONSVILLE.GPJ 9/7/18 LOG OF BORING GS-1 PAGE 1 OF 1 LOCATION: Geosyntec 9211 Arboretum Parkway,Suite 200 • Project Name:Gordonsville Substation Drilling Contractor:Triad Eng. Richmond,VA 23236 GS-1 Office: (804)767-2206 Project Number:MV1470 Drilling Rig:CME 55 consultants Fax: (804)767-2182 Start Date:8/30/2018 Drilling Method:HSA ATTERBERG Finish Date:8/30/2018 Drilling Mud:N/A ag LIMITS%) o • SPT N-Value • y UU Test I MOH's Hardness I w o Northing: 6729407 Easting: 11563141 7; 20 40 60 80 10 r o 1 2 3 4 5 6 7 8 s,c ~ ? w Surface Elevation:517.5 MSL-feet m RECOVERY(%)I a° A Abrasion A o 7, I o 0 e "^0 1 2 3 4 5 6 7 8 9 ,[ J U U c ^ Z Datum:Virginia State Plane NAD83 North Zone d w y a o I F 7 20 40 60 80 101 2? C7 . a a. r co Vertical Datum:NAVD88 N 8 Z r in m „ Plastic Moisture Liquid co rn Z a 3 d a, = , Limit Content Limit a g g 7, > aE E I'-' U 1- • rn I • I 0 ¢ m mCo co a E. A RQD(%) A E m7, a. o- Co LT., `n `n (0 MATERIAL DESCRIPTION co z 3 20 40 60 80 10 &L (Ln Co (3 a 0 20 40 60 80 100 2 LL PL PI o- �X _ 0'-2'Medium stiff,SILT(ML),reddish brown,moist,low plasticity, 3-3-5�(8) 1 ML contains roots and rock fragments[FILL]. V •.- _ 5-152'-3.5'Same. a-5�-5(9) • 2 3.5'-4'Stiff,ELASTIC SILT(MH),brown,moist,medium plasticity.- 5_ 3 4'-6'Same,becomes medium stiff,reddish brown,contains rock 2-2-3-4(5) fragments and layers of lighter brown wood fragments[FILL]. • •• ...... .. ...... ... . X .. ... _ 6'-8'Same,becomes soft. 2-2-2-4(4) 10 4 ♦ >, . ... 0- -__XMH 8'-10'Same,becomes medium stiff,contains lenses of fine to coarse 0-3-3-4(6) A, r 5 sand and rock fragments. ' - 1 505 13'-14'Same. 2-2-5-6(7) 6 14'-15'SILT(ML),with trace fine to coarse sand,yellowish brown,moist, 15 low plasticity,with staining along decomposed fractures,contains mica - - [RESIDUAL SOIL]. .... ...... . ... ...... ... ... . . •.. ... ...... ... ... ... 500 ... ... ... .. ... ... ... 18'-20'Same,becomes hard,with vertical fracture infilling of greenish 21-33-44-50 7 gray silt from 18.5'-19.0'[WEATHERED ROCK]. (77) '' ' - 2 4-95 - ML .... .. . - 8 23'-25'Same,hard. 50/5" . - 25- 490 -8 9 28'-30'Same. 50/6" -- 30- BOREHOLE TERMINATED AT 30 FT BGS t Key to Abbreviations: Notes: Water Level Est.: Q Measured: 1 Perched: 3 (1)HSA:Hollow Stem Auger;(2)Location:Grass at edge of trees,flat,top of fill slope;(3) Water Observations: Not encountered during drilling SPT-Standard Surface:2"topsoil and root mass;(4)Boring backfilled with auger cuttings;(5)Weight of Hammer Penetration Test from 8.0 to 8.5 ft. Sample Key: ® SPT I Shelby Tube El Califomia Sampler m Rock Core N-SPT Data(Blows/Ft) Logged by:C.Lynch GEOSYNTEC GEOTECH GEOS GORDONSVILLE.GPJ 9/7/18 LOG OF BORING GS-2 PAGE 1 OF 1 LOCATION: Geosyntec 9211 Arboretum Parkway,Suite 200 • Project Name:Gordonsville Substation Drilling Contractor:Triad Eng. Richmond,VA 23236 GS-2 Office: (804)767-2206 Project Number:MV1470 Drilling Rig:CME 55 consultants Fax (804)767-2182 Start Date:8/30/2018 Drilling Method:HSA ATTERBERG Finish Date:8/30/2018 Drilling Mud: N/A o LIMITS'%) o • SPT N-Value • ~ X w x UU Test I MOH's Hardness I z o w Northing: 6729329 Easting: 11563188 d 20 40 60 80 101 t o 1 2 3 4 5 6 7 8 9,c F- Z "' Surface Elevation:515.8 MSL-feet c o o H o r E rn 0 m RECOVERY(%)I - Abrasion p o _ O O d c 'i0 1 2 3 4 5 6 7 8 9 18 J 0 U N Z Datum:Virginia State Plane NAD83 North Zone y N w # o x ; „ a 20 40 60 80 101 1° a c9 .c a s t co Vertical Datum:NAVD88 1n 7 2 gi w in rn„ Plastic MoistureContent Liquid I- 5 g g Z a _ E Limit Limit 0 p g g a' aai a E 10 0i a > A RQD(%) A =Ea `m C w N o a a cn w o co c 0 n MATERIAL DESCRIPTION co 8 z = E d c �, I • I p a _ 3 20 40 60 80 101 &S cLn i/7 2 c°�a`0 20 40 60 80 100 2 LL PL PI a 515 0'-2'Medium stiff,SILT(ML),with trace fine sand and day,reddish 3-4-4-3(8) 1 1 L brown,moist,low plasticity[FILL]. 2'-4'ELASTIC SILT(MH),with trace fine sand and day,reddish brown, 2-2-4-5(6) ' 2 moist,medium plasticity,contains rock fragments. 'ii 4'-6'Same,becomes soft,mixed with light and dark brown. 2-2-2-3(4) - 5 3 5• 6'-8'Same. 0-1-2-4(3) MH ... ... ... - �/ 8'-10'Sam,becomes medium stiff. 1-3-5-7(8) - p-/mot 5 ...... ... ... ...... ... 0< ... - 1 505 - .. . ... .......... ... ... 13.-13.2'Same. 2-3-3-4(6) - - 6 13.2'-15.0'Medium stiff,SILT(ML),with trace fine sand,reddish brown, - 15 moist,with staining along decomposed fractures,contains rock 500 - fragments[RESIDUAL SOIL]. 18-20'Same,becomes hard,dark and light brown,with staining along 28-40-40-35 - 3 7 decomposed fractures[WEATHERED ROCK]. (80) I - 2 495 - -- 8 //// CL 23.0.-23.5'LEAN CLAY(CL),greenish gray,moist,medium plasticity, 13-38-50(88) expressed as vertical infilling within weathered rock. - 25- 23.5'-24.5'Same as 18'-20'. 490 - .... ... ...... ... ... ...... - - ML .... .......... ... ...... ... 28'-30'Same. 33-17-45-50/5' • 9 (62) .... ...fl - 3 BOREHOLE TERMINATED AT 30 FT BGS ) Key to Abbreviations: Notes: ' Water Level Est.: Q Measured: I Perched: sr (1)HSA:Hollow Stem Auger;(2)Location:Grass at edge of trees,flat,top of fill slope;(3) Water Observations: Not encountered during drilling SPT-Standard Surface: 1.5"topsoil and root mass;(4)Boring backfilled with auger cuttings;(5)Weight of Penetration Test Hammer from 6.0 to 6.5 ft. Sample Key: ® SPT I Shelby Tube Z California Sampler m Rock Core N-SPT Data(Blows/Ft) Logged by:C.Lynch GEOSYNTEC GEOTECH GEOS GORDONSVILLE.GPJ 9/7/18 • LOG OF BORING GS-3 PAGE 1 OF 1 LOCATION: Geosyntec o 9211 Arboretum Parkway,Suite 200 • Project Name:Gordonsville Substation Drilling Contractor:Triad Eng. Richmond,VA 23236 GS-3 Office: (804)767-2206 Project Number:MV1470 Drilling Rig:CME 55 consultants Fax (804)767-2182 Start Date:8/30/2018 Drilling Method:HSA ATTERBERG Finish Date:8/30/2018 Drilling Mud:N/A o LIMITS%) o • SPT N-Value • z w w UU Test SI MOH's Hardness m w 0 w Northing: 6729418 Easting: 11563198 L 20 40 60 80 101 0 1 2 3 4 5 6 7 8 9,c z ? j 0 Surface Elevation:506.E MSL-feet `- m RECOVERY(%)m a° Abrasion N co N C '�0 1 2 3 4 5 6 7 8 9 1C J 0 U n 0 Datum:Virginia State Plane NAD83 North Zone 2( y wVt o a ) 20 40 60 80 1or Y 0 g Plastic Moisture Liquid 1 o ai Co~ z • 0. a E CI) Vertical Datum:NAVD88 N = 2 H L CO .c = Limit Content Limit 1- o g g z d d co E m CO a - ? v A ROD(%) A o f an d c y o a a CO W o co w 0 D MATERIAL DESCRIPTION z 2 I • I o a 20 40 60 80 101 ct o to cnn `w° 0 a`0 20 40 60 80 100 2 LL PL PI a t 0'-2'Medium stiff,SILT(ML),with trace fine sand,reddish brown,moist, 2-3-3-5(6) . .505ML contains organics,changes to orange brown at 1'[FILL]. :2'-2.5'Same. 3-6-7-7(13) •2.5'-4.0'Stiff,SILT(ML),with trace fine to coarse sand,orangish brown, • 'moist,and lenses of greenish gray lean Gay along vertical fractures 7_12-13-25 • • • - 5 [RESIDUAL SOIL]. (25) _ 4'-6'Same,becomes very stiff,light brown. .... ......;... ... .500 6-8'Same,becomes hard,contains large quartz rock fragments 12-50/5" [WEATHERED ROCK]. - j 8'-10'Same,becomes very stiff,contains vertical infilling of lean clay 7-10-15-19 5 along fractures(clay lenses typically 0.25 to 0.50-inch thickness). (25) - 1 ML 495 _ � 6 13'-15'Same,becomes hard,infilling less decomposed/weathered,less 50/4" _ like clay,more like weathered rock. - 15- 490 _ • - a 7 18'-20'Hard(no recovery). 50/2" BOREHOLE TERMINATED AT 18.2 FT BGS Key to Abbreviations: Notes: Water Level Est.: V Measured: t Perched: Y (1)HSA:Hollow Stem Auger;(2)Surface: 1"topsoil,root mass to 6";(3)Boring backfilled with Water Observations: Not encountered during drilling SPT-Standard auger cuttings. Penetration Test Sample Key: ® SPT IShelby Tube Z California Sampler m Rock Core N-SPT Data(Blows/Ft) Logged by:C.Lynch GEOSYNTEC GEOTECH GEOS GORDONSVILLE.GPJ 9/7/18 • LOG OF BORING GS-4 PAGE 1 OF 1 LOCATION: Geosyntec o 9211 Arboretum Parkway,Suite 200 project •Name:Gordonsville Substation Drilling Contractor:Triad Eng. • Richmond,VA 23236 GS-4 Office: (804)767-2206 Project Number:MV1470 Drilling Rig:CME 55 consultants Fax (804)767-2182 Start Date:8/30/2018 Drilling Method:HSA ATTERBERG Finish Date:8/30/2018 Drilling Mud:N/A o LIMITS%) o • SPT N-Value •ii y UU Test I MOH's Hardness I w LU uJ Northing: 6729343 Easting: 11563241 a ) 20 40 60 80 10 xw L0 L 0 1 2 3 4 5 6 7 e 9 1C I— Z Surface Elevation:504.2 MSL-feet `- I RECOVERY(%)m a c A Abrasion A o 8 p d-' C �0 1 2 3 4 5 6 7 8 91C J O O z Datum:Virginia State Plane NAD83 North Zone �, y a w p v y y E a ) 20 40 60 80 101 c> Y, G: O cn E- 1 .6 .c a a L rn Vertical Datum:NAVD88 6.N Y a „ Plastic Moisture Liquid cn z a Limit Content Limit I- 0 g g rn m m Ti o Co Con C7 re Z v ROD(%) o f a� d ? c I • I Co a a ,X MATERIAL DESCRIPTION ) 20 4o 60 80 10 or b cn c 0 a 0 20 40 60 80 100 2 LL PL PI a 1NAL 0'-1.3 SILT(ML),dark brown,moist[FILL]. 2-4-4-8(8) :•..:... . :...:... . : : ..: 1.3'-2.0'Medium stiff,SILT(ML),orangish brown,moist,staining on .... .......... •. Xdecomposed fractures,contains large quartz fragments[RESIDUAL 13-26-33-50 2 SOIL]. (59) 500 3 2'-4'Same,becomes hard,light brown. 27-50/5^ 4.-6'Same. BOREHOLE TERMINATED AT 4.9 FT BGS Key to Abbreviations: Notes: Water Level Est.: 4 Measured: 1 Perched: 7 (1)HSA:Hollow Stem Auger;(2)Surface:2"topsoil,root mass to 6";(3)Boring backfilled with Water Observations: Not encountered during drilling SPT-Standard auger cuttings. Penetration Test Sample Key: ® SPT I Shelby Tube 0 Califomia Sampler 11 Rock Core N-SPT Data(Blows/Ft) Logged by:C.Lynch Appendix B Historical Boring Location Map and Boring Logs •1 nc7rE-s: / �d ' !� /V S r f/yeas —_ • ``` /Vi f �� // 1 I ! /vEPCO . ., r - --` • ID Au G e.p w My�J wee'•en.W+R isTnG..RN.inlee.xw..eR - / / / 100' I �`• CD ,• .•1••.Vwcs,. .b.....e/.+lea»s Peet Sag Flerrew..sta••. • - -t ® TO.Rmmt.-Verge....se Ass...Eauaswnr.Tr►tn wwo fltcR•aa RDA.. / j f/ ,' ♦ M _ I / - swr..Rn-A..eAN1O.Aa..n,ts�Daer-Crsvr.o-s•DA,A•�•0..YCMT+4p •i' / %; .•-- 1 ''sage--�� ,\ - , GR.w.3,e..., / / �� J 1 .532'3'`20'E - ,'.O` 11/i $ l - r c @ /sags Dl...,,o.-..aec.w Mar G+..e.trp Dv frvs..s....LL O.t•.•.s..sro �Y B. M. - ry _ "' + 1 T. 8.M. - Wh•..Y Ch-�l•61f... Lagw.q,1•DgM.LMi ZMO!►,!L•>Mu<Np " _ �7 T • __•jO Ro».-Q,"y*te.sags....,,,a•.s:•.wtnt-,As. / CO\C.MOM. �' \ Y �' CONC.MOM. stir. C..sArwfi,..S.ta..sAR►Te•iS.•5,1Exces Aemst-w,..an» /TOP ELEV. /�' ```. ��" TOP ELEV. 504,$0' T•N-Gcww Msg. Mn..o-G•csa♦•5•a O.lb►O C�..Ate.G.rr••v.o F.a .- .•♦/• ` ' ♦\ ` �' -,_ P i • .e»•...M ZARCRD•. was.e.R►.•.•c M•v!•Wer..b.wc.rc«..o..�&wt. �' "/ .-.��•.. '/ ••. •. - r- SC[ E'.Me.•wY Cowmen_RJ.•O•t.t6. .C•...1♦70Tta•S.•9,R9R Inap,..pryn.. // , r 1 f•..--- /-' . -_ •. ` -- �--�P-1_` *• - - 1Ryrerer.n»s. / . . alE ....--......• ;\ jag ti_--\���,. i/"�- ,� Pwo.as.w Cs••rrrnuNe ARr rL�avwmnD.72c••t>sr.»o-Tn G� / - . LrmMf?:1�nen5fhr•.Ceinrne+. o ' ` fff111 1 '`� ♦` • /i ® Rtr.wt Tn WIDARD...w.•n...Q.....> I7...o. l-.77!Of errs. - / -?. '^ .. a:Ac-r�.+t J ''_- I) ..- • 11 ` -. !).•A•.wag...,.......-Or.e.e:nsr »ILs o. sag G1ag.. .ces s.Ruw,e. nag. . .- • - _. _ \�. : --_ X. --- 1-, -Sot aT.e Res.,,.. - - • ;, -� \♦ .` \ 1 ` '��-_,111:711.• 5•.•...s,,ass...a••....e My A..we.Ltic..:4w..•Tfa- -•- -,: ------ - - \ i OP c.r.•eTrt,reTso Acaaswe...c.7.T....w TY.,C...-. ..G'�e ns.Murer.,....nc. 0 - . _ } \t3aom.v► Ole.•.»ages,» . - - _ '-- `.� `♦ \® AAA-rt..A-MAIR4.•.S.�..u.0►.M.�f•D.AGD I►9 MVTMM CiDT OW ,r l '. '� i 1 \. f� __CC>ZLr-rae Plr rag....► KMs•D 71K»As SOLCOP►raif ETG Yt . l+ �!>YY�P �• i 1 I •tD E ssva«Geese,.- 'Sera» Frme T.e Rstsrer .Goner?, - t Y I '-`d..- "i•- - _ - ��- • ' r # ,� '_tti'..o xa..s-car WA w Ln»..an CYrouce sass.,alreer...eu..,,. Zags_--" - r• 1 -'_ '- ` \ •Cr,'. \ 1 '"� --'I- `C7r•1.bY.R.Y.fdIGTN'.GY1rhR In �JInClIe.•..\+,T..Mn Ga......r rcer lees _ �' / r-��' `_ �- \ E3..us 4•My Ar Ir em e.?.E Pt..-.+wean the L.D..Taws 6-.Rag•.•-•t To I1 \ \ Ilk 1YY.eca Srrelww.nny Ftart Rxe«cmm Cl-iicr R.s+v►,S.rnnn IZ.'f i 0 .E a ,- i \ •, \ \ \®PRnq>ersa C•Onn ,c CAMe.ar Fumes A.r.. ,a✓hn.D•Itfo GR..ot., 'w/-� _��D ^faFT -- - �- i - R5 [.\ -0 Ass.•5•.w .on An E'rer•Ste.N e.MwRO.D ArteTnO..In RKe PRv..e -0 ' K• V_ \ -., \ -AMY L..vso R.TVRDIne.A[T.um.CS.�E-sa.to»Cnrmtea.PLAn �+ - 1. �- i __- ••vor,....r_arrocf _. 0 ct oorc . `''---- 1 ---- ` \\ - - ''�'®'1s.TuR»•ARrwr:o ARo..roTi.Der Co»xt2uLTro.1:a tiRr lA.YrEain:t+.e/r - - �• •-. t • 2.e% "• 1 -' •• O' \ r -- ', ` --- •+•• 0 -. •P.cce.,»f auro. hlg' • a i�« y E _ ago- -s '11 1 •'y�O� \ { +Tag_• q96 • ©VONT GNrerrs o VeN•untr,PRRART••n4»Y 0.N*..w s A.oTR.»aRMew se --J A a t I \ ♦1 I e w=.,,a. i I 'r'�,1 " 1 \ I 1 __ ='-Vase..Gvr U.tOp GoYvy. .. ...VA'/ -- , - ' r Q O -`\ t` _ ; \ • ` •. \\r 1 V tea. - - _•Rne.•t,-- e.4.0 CUY.a.G'..Mm.12•) / - /' • \ •._ - 71 42' _ ! I ,♦ \ , -_- -._.,Fa...__''sags. 9•' f0 Cu Ys-s(too_L•ST) . . .- /% 76 . �♦�}. - `4`" _ 3 Q V 1 i ''' \ \\`\ V I •" -\�• •. . . 4,... _1 A.Cu.Y►w ..:___-. ' 6r- ! \� ' 13 �� ,fir \-~_ \:� i ( .;�:__.. \ \\ ; \ /�.. V ---•494 (9'7✓I'N1VIt.ItY 5.eot..0 wfa.6rib.t-A�Ses.s.&flow»GRwot•sa t5 'r ■ • CgNn.R•ew Vwsano.o Tw•r FL•er s.,tr•5ewprw It.nor C.e.w.Tree.•-'_ . // /' )• ' i`�- . - - Q • V •l• R+ Clir•w...�.r • `� \ \\♦ ``\ `•�• ..�-25 B/L '• - Rane-sermon 15 NO,,.A..NOns e..O A ..A.r.Tn CD'.soos Hag eer-'--_ / (+� U yO (� .T.str•r..v Amo-Tn Or&Nem.,VT.S'e' - -._sags . _ e / ,' ,. '�.,\ 4 \ ; '?` I `• \\ \ `\\ \\` J - SyO�� i / �p (P� , l/ :_fro -(9I . iI R.17 i i\ \� % ♦♦ ♦`♦ rl \ - _ -_- -09. • p •11oos :cam �♦�-'t-. �II,_ i�. ---4 -- -_` \ \t \N. '\ ( ♦ M \` • ♦i f' �ye4 I: -_:.eel:^• y. ♦ ' /'— L/TC 1 Q "�1, I1 k } e n \ Q `1 \ \i \ A9� t. • • / P O .c.50. 000111 F J 'o \\ 2.ez \ b i nva..a..v \ ; \ 3 \, N • e.ree \ e i \� / � e .r \\ ,' V• \'..* '\`. \\ ` i\ `` • b t1 t tl iDO.C� `� r ♦ ..11 ♦ _ -• ♦�♦\\+ -q9 `Lr aoR.wlc, �OT'ES/1� ` i i2 1 ..ono; Se+O'• '. 10. \ \ �.y� �� 9 .71.‘1,.•• ALL $oua..41 -rtv. 56 e -O �tEP. ' � I �- -.�'�: 4oro !�^n.'>' T• to .po. \\ ♦ • `` ' �.�-'" ♦♦ _ I '� roe r lag• 19 oa \ <\' _T \ • , �s96 Z, ® �l•1CrCAT'ES WALiI $ORl13b To 1c2i/II • •• �r4�e. - ~• ^' -- _ iilirjr ` V • ♦� r �,.. -\` \ �. ief„AT1o.a of +?eltt r 1G Amy• Z/3 a,6 10 �'• '-,♦\ $ 'lag �� - d�l2S ` -<.29 \\ d.l-� ` - 1111111111111' • ® ,,\ F / • \ , \ `\ - tip^_ 3 •T MIGkras 3oresuca tom.% briamowRD satAr ua♦./ 1-•• �r I —� i ---- \ l'. • Iasruw 3t'C!r StaDo/d �/ S 8� --\ I i �, d1�' -� • \ \ . t 1 ..., 4.10 NI\...:\ • \\ • . ' �.._/�''/ I { ._- _ I - -- i ♦ 'yip t • \ \ 1:r2 S.ev'+e"MG r • wes...C.Amreset •�52R` .. // _--W4,_ `��-sags �•;. ! \\• __ EPfre.so.DOGa»r.a..a�` : \ err--gy.aew Pe•.css. - r //' �,'� t 3 ,_5 w ---_fl.ecf •� 6 t i (1 /1 ° 5►.i.Tir J�,• / _ _ Q. � �.� $ _ - .�--�a / _ try .: p IF ..- (/.. /',"' /� / !' o`'c `• % � • .~-`. T.B.M. PIPE o Ica, z • �•F. i� �t TO ELEV. 51t.29 v 0� 3 >` ��' } �.' .5 ~•- —sage- ! i• -r-r - -�.1' .,• == '.�• ��``s sw rt♦ • !�`< 1 �" f-� `�_ �y+•R:��t30. 646`g' l VIRGINIA, ELECTRIC AND POWER CO. f R,e a `, �, I ..r4`_'' of Z +� / -� SYSTEM ENetNEERINO DE►ARTMERT 520 ��f.:_'•=-- l f.- 42.0630eW o e r GRADING PLAN • ,�e'� _--- --' r ' ---�` -- ,° GORDONSVILLE SUBSTATION �` _ • ry�� y ® ALBEMARLE COUNTY, VIRGINIA -• - 111 .....,./. /- DRAWN •1V NAME LET oar WOO.NO DRAWING nO -_.. T.B.M. PIPE .. ,.• • . TOP ELEV 516.00 Co CNfA • rwP,Y•zs•>s SCALE 1 OF ( - 2-577-05 .aPECTE0 ADav se" 1-..O• • CORRECT J./C.,./ 44 y.v 71 v... 94-o9s6 APPROVED %C 1-•r.•af ',!C>. '712C.00m-a yt\ 4•!t•74 Ki` 10 91$I 10-fit AOSON r / SOUTH ANNA PivEP (., Pam Pam° . --f� •��'L / \v l'c N \ �o k' . 'ec�+ `SITE 231 2 000' VICINITY MAP VIRGINIA ELECTRIC & POWER CO. Engineering Department L30n Lloms�fILLE uasTAT10A) D APP. I DATE V—/B-8 uu , SCALE/ 20001 �1C 1 THE H & E CORPORATION • RICHMOND, VIRGINIA Boring No. H.&E. File R117 • Client VEPCO Client No. 71 26,0091 Project Gordnnaitillp Substation Date Ort_ 5, 1981 ing Loc. See Lod". Dwg. w taken 10/5/RI )e Sampler Std, S.S- Sheet 1 of imp. Penet. Mtl. Jo. pa,ta' Depth Elev. Chg. Description& Remarks 0 18 -- Red, slightly silty clay 25/25 16 Same 19/23 V- 5 12 1 Same 17`24 10 7 1_ Reddish decomposed Rock _ 8/11 15 6 . _ Same 9/12 J — 20 Same 12 �—• Bottom of boring rr--- 5 0 rr— 5 0 5 -T--- 0 *Blows per 6"penetration or pressure. THE H & E CORPORATION • RICHMOND, VIRGINIA Boring No. 5 H.&E. File 8317 'chew VEPCO Client No. 71260053 Project Gordonsville Substation Dale Oct. 4, 1983 ng loc. See Loc. Dwg. w taken 83 e Sampler Std. S.S. Sheet 1 of np. Penet. Mtl. o. Data" Depth Elev. Chg. Description& Remarks 0 5 Red, slightly silty clay _16/22 8 Same 15 25 5 14 L Same 14 23 ! w- 10 4 Reddish decomposed rock 8/12 L- 15 4 1_ Same 4/6 r-- _ 20 L Same zj" -� Bottom of boring 5 0 5 0 5 0 *Blows per 6"penetration or pressure. THE H & E CORPORATION RICHMOND, VIRGINIA Boring No. 8 H.&E. Filo 8317 Client VEPCO Client No. 71260053 Project Gordonsville Substation Date Oct. 4, 1983 ing Loc. See Loc. Dwg. w taken 10/5/83 e Sampler Std. S.S. Sheet 1 of 1 np. Penet. Mtl. o. Data Depth Elev. Chg. Description&Remarks 0 5 Red, slightly silty clay __i 1/13 9 I— Same _16/20 5 16 Same 18/24 w to 4 Reddish decomposed rock 5/8 15 6 Same 9/10 20 Same .ri4 ==== Bottom of boring 5 0 5 0 5 0 "Blows per 6"penetration or pressure. Appendix C Virginia Department of Transportation, Soil Design Parameters for Sound Barrier Walls, Retaining Walls and Non-Critical Slopes — April 14, 2011 Soil Design Parameters for Sound Barrier Walls, Retaining Walls and Non-Critical Slopes Virginia Department of Transportation April 14, 2011 Introduction The purpose of this document is to provide minimum requirements for drained soil parameters to be used for foundation design for sound barrier walls, retaining walls and non-critical slopes. The parameters contained herein should not be used for design of bridge foundations or retaining walls in excess of 15 feet in height or retaining walls that support other structures. Site specific laboratory testing must be performed for foundation design of bridge structures or for critical slopes. Critical slopes are defined as any slope that is greater than 25' in height, affects, supports or impacts a structure or roadway, or whose failure would result in significant cost for repair, or damage to, private property. The intent of this document is to provide the minimum soil parameters that are acceptable to the Department based upon correlations with the results of Standard Penetration Tests (SPTs) and not supported by appropriate laboratory strength testing. The design geotechnical engineer is ultimately responsible for his/her design and may use more conservative values than contained herein. The effect of ground water shall be considered when evaluating the applicability of any soil parameters. Correlations of Soil Properties The soil design parameters contained herein are based upon correlations between N60 values and general stratigraphic soil properties. Although more specific correlations may exist, the following soil design parameters have been synthesized for design purposes. These soil design parameters have been determined based upon numerous correlations in the referenced literature, laboratory test results and engineering experience with local soils in Northern Virginia. The SPT N60 values are derived from Nfield values that are corrected for hammer energy, CE, and length of rods, CR. Gravel inclusions may increase individual Nfield values. Design soil parameters for strata containing gravel inclusions should be chosen by excluding outlier N values. The design values recommended in this document are reasonably conservative to allow for variation of properties between borings and current levels of field quality control during construction. 1. Culpeper Basin Physiographic Province Soils in the Culpeper Basin are derived from weathering of the in-place sedimentary rocks such as siltstone, shale and sandstone. These rocks are often interbedded and weaker strata can sometimes underlie stronger upper strata. They generally dip at 5 to 25 degrees in a west to south-west direction with the steeper angles in the eastern portion of the basin. Intrusions of igneous diabase have thermally metamorphosed these sedimentary rocks to form hornfels. Isolated pockets of soluble limestone exist near Leesburg. The depth of weathering is variable but is generally less than 2 to 3 feet in areas of sandstone but can be up to 10 to 15 feet in areas of diabase. The following are typical strata descriptions and associated properties: Stratum I—Upper Zone/Soil—This stratum comprises near-surface soils, typically of the A and B horizons which have a homogenous structure. They are generally of medium to high plasticity and are classified as CL, ML, CH, MH and CH-MH. In areas of diabase, the clays are known locally as"blackjack". Typical SPT N60 values range from 3 to 30 bpf. Typical thickness is 0 to 3 feet. This stratum may not be present in all areas. Table 1: Typical Engineering Design Properties (Upper Zone/Soil) Sub- SPT N60 Cohesion', c Friction Moist Unit Saturated Unit Stratum Value (psf) Angle,4 Weight2(pcf) Weight3'4(pcf) (bpf) (degrees) I-A <2 Lab.test Lab. test Lab. test Lab.test I-A <5 200 (9.6 kPa) 18 105 (16.8 kN/m3) 112(17.9 kN/m3) I-B >5<_20 250(12 kPa) 20 110(17.6 kN/m3) 117(18.7 kN/m3) I-C >20 350(16.8 kPa) 25 115 (18.4 kN/m3) 122(19.5 kN/m3) Notes: 1. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water Stratum II -Residuum—This stratum comprises soils that have weathered from the parent bedrock but can be excavated with power equipment. Residuum commonly retains the structure of the parent bedrock but contains additional fractures and partings with less than 10%unweathered rock fragments. They are generally of low plasticity or non-plastic, are usually classified as SC, SM, CL or ML and often contain boulders (diabase) or platy unweathered rock fragments (siltstone/shale). In areas of diabase, sands are known locally as "jacksands". Typical SPT N60 values range from 5 to 60 bpf. Typical thickness is 1 to 7 feet. Table 2: Typical Engineering Design Properties (Residuum) Sub- SPT N60 Cohesion', c Friction Moist Unit Saturated Unit Stratum Value (psf) Angle, Weight2(pcf) Weight3'4(pcf) (bpf) (degrees) II-A <2 _ Lab. test Lab. test Lab. test Lab. test II-A <10 100(4.8 kPa) 26 115 (18.4 kN/m3) 122 (19.5 kN/m3) II-B >1030 100(4.8 kPa) 30 120(19.2 kN/m3) 127(20.3 kN/m3) II-C >30 100(4.8 kPa) 34 130(20.8 kN/m3) 137(21.9 kN/m3) Notes: 1. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water Stratum III -Decomposed/Weathered Rock—Decomposed or weathered rock is defined material with SPT N60 values greater than 60 bpf, Core Recovery<85% and RQD<50%. Table 3: Typical Engineering Design Properties (Decomposed/Weathered Rock) Stratum SPT N60 Cohesion', c Friction Moist Unit Saturated Unit Value (psf) Angle, 4) Weight2(pcf) Weight3'4(pcf) (bpf) (degrees) III >60 250(12 kPa) 36 132(21.1 kN/m3) 139(22.2 kN/m3) Notes: 1. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water Rock—Unweathered rock consists of siltstone, shale sandstone or diabase with SPT N60 values greater than 100/2", Core Recovery>85% and RQD>50%. Table 4: Typical Engineering Design Properties (Rock) Stratum RQD Cohesionl,c Friction Moist Unit Saturated Unit (%) (psf) Angle, 4) Weight2(pcf) Weight3'4(pcf) (degrees) IV >50 400(19.2 kPa) 42 135 (21.6 kN/m3) 143 (22.9 kN/m3) Notes: 1. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water Fill Soils (Siltstones/Shales/Diabase)—These soils consist of compacted fill derived from soils/weathered rock of stratum II or III above. Highly plastic clays of stratum I are not suitable as embankment fill. Weathered rock of stratum III often degrades over time to form soil with properties of stratum II. Parameters for existing fill soils must be evaluated on a project-specific basis considering the potential for material type variation within the fill embankment as well as the potential for variability in consistency/relative density. Parameters for existing fill may be based upon the in-situ"N" value but shall not exceed the maximum value listed for stratum II above and new fill below. Table 5: Typical Engineering Design Properties (Fill Soils- Siltstones/Shales/Diabase) Stratum Degree of Cohesion',c Friction Moist Unit Saturated Unit Compaction (psf) Angle, 4) Weight2(pcf) Weight3'4(pcf) (degrees) NEW >95% of 50(2.4 kPa) 30 115 (18.4 kN/m3) 122 (19.5 kN/m3) FILL VTM-1 Notes: 1. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water Groundwater—Groundwater is generally not encountered in the upper(soil/residuum) strata. Perched water is often encountered on the surface and overlying unweathered bedrock. A caved borehole is usually indicative of groundwater due to the typical low plasticity of stratum II soils. 2. Piedmont Phvsioaranhic Province Soils in the Piedmont Province are derived from weathering of the in-place metamorphic rocks such as schist, mica schist, gneiss and phyllite. The depth of weathering is highly variable and depends upon the mineralogy of the parent rock. The following are typical strata descriptions and associated properties: Stratum I—Upper Zone/Soil—This stratum comprises near-surface soils, typically of the A and B horizons, which have a homogeneous structure. There is no evidence of a relict rock structure. These soils are generally of low to medium plasticity and are classified as CL, ML or CL-ML. Higher plasticity soils (MH) are occasionally encountered and are also included in this stratum. Typical SPT N60 values range from 5 to 50 bpf. Typical thickness is 0 to 3 feet. Table 1: Typical Engineering Design Properties (Upper Zone/Soil) Sub- SPT N60 Cohesion', c Friction Moist Unit Saturated Unit Stratum Value (psf) Angle,4) Weight2(pcf) Weight3.4(pcf) (bpf) (degrees) I-A <2 Lab. test Lab. test Lab.test Lab. test I-A <5 200 (9.6 kPa) 18 100 (16 kN/m3) 107 (17.1 kN/m3) I-B >5_20 250 (12 kPa) 20 110 (17.6 kN/m3) 117 (18.7 kN/m3) I-C >20 350(16.8 kPa) 25 120 (19.2 kN/m3) 127(20.3 kN/m) Notes: I. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water Stratum II - Saprolite—This stratum comprises soils that retain the relict rock structure of the parent bedrock but are soft enough to be excavated with a shovel or light mechanical equipment. Joints are often filled with manganese or other oxides and clay. They are generally non-plastic or of low plasticity, are usually classified as ML or SM and often contain significant amounts of mica. Occasional quartz gravel may be encountered. Typical SPT N60 values range from 5 to 60 bpf. Typical thickness is 1 to 50 feet. Table 2: Typical Engineering Design Properties (Saprolite) Sub- SPT N60 Cohesion', c Friction Moist Unit Saturated Unit Stratum Value (psf) Angle, (I) Weight2(pcf) Weight3'4(pcf) (bpf) (degrees) _ II-A <2 Lab. test Lab. test Lab. test Lab. test II-A <10 50(2.4 kPa) 28 95 (15.2 kN/m3) 102 (16.3 kN/m/) II-B >10<_30 50(2.4 kPa) 30 118 (18.9 kN/m3) 125 (20 kN/m3) II-C >30 50(2.4 kPa) 32 130(20.8 kN/m3) 137(21.9 kN/m3) Notes: 1. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water Stratum III-Decomposed/Weathered Rock—Decomposed or weathered rock is defined as material with SPT N60 values greater than 60 bpf, Core Recovery <85%and RQD<50%. Table 3: Typical Engineering Design Properties (Decomposed/Weathered Rock) Stratum SPT N60 Cohesion', c Friction Moist Unit Saturated Unit Value (psf) Angle, (I) Weight2(pcf) Weight3,4(pcf) (bpf) (degrees) III >60 250(12 kPa) 34 120(19.2 kN/m3) 128 (20.5 kN/m3) Notes: 1. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water Rock—Unweathered rock consists of schist, mica schist, granite, gneiss or phyllite with SPT N60 values greater than 100/2", Core Recovery>85%and RQD>50%. Table 4: Typical Engineering Design Properties (Rock) Stratum RQD Cohesion', c Friction Moist Unit Saturated Unit (%) (psf) Angle, 4. Weight2(pcf) Weight3'4(pcf) (degrees) IV >50 400(19.2 kPa) 40 130(20.8 kN/m3) 138 (22.1 kN/m3) Notes: 1. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water Fill Soils (Micaceous Silt)—These soils consist of compacted fill derived from soils of stratum I, II or III, above. They generally lose their relict rock structure during compaction and form a homogeneous soil matrix. Parameters for existing fill soils must be evaluated on a project-specific basis considering the potential for material type variation within the fill embankment as well as the potential for variability in consistency/relative density. Parameters for existing fill may be based upon the in-situ "N"value but shall not exceed the maximum value listed for stratum II above and new fill below. Table 5: Typical Engineering Design Properties (Micaceous Silt Fill Soils) Stratum Degree of Cohesion', c Friction Moist Unit Saturated Unit Compaction (psf) Angle, 4) Weight2(pcf) Weight3'4(pcf) (degrees) NEW >95% of 50(2.4 kPa) 30 105 (16.8 kN/m3) 112(17.9 kN/m3) FILL VTM-1 Notes: 1. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water Groundwater—Depth to groundwater is typically greater than 15 feet. Groundwater is frequently not encountered on higher elevations but springs often occur due to relict fractures in the saprolite structure. A caved borehole is usually indicative of groundwater due to the typical low plasticity of the native soils. 3. Coastal Plain Phvsioaraphic Province The Coastal Plain comprises a"wedge" of non-consolidtaed soils which have been deposited east of the Fall Line (roughly east of I-95). This wedge of soils consists of interbedded sand, silt, and clay that gradually thickens towards the east and is underlain by crystalline rocks of the Piedmont Province at depths of 300 to 500 feet near the Potomac River. Terraces of sand and gravel (up to 60 feet thick) are often encountered over Cretaceous Age ("marine") clays just east of the Fall Line. "Marine" clays Are classified as Problem Soils by Fairfax County due to their potential for slope instability and shrink-swell characteristics. Stratum A—Alluvial—Alluvial deposits can be either fine- or coarse-grained near surface soils that have been deposited by streams, rivers or in a depositional manner from higher elevations with homogeneous structures. These soils are generally non-plastic to medium plasticity and are classified as CL, ML, SP, SM with minor amounts of CH, MH, SC and GP. Typical SPT N60 values are less than 15 bpf. Typical thickness is 0 to 20 feet. This stratum may not be present in all areas. Table 1A: Typical Engineering Design Properties (Alluvial Soils) Sub- SPT N60 Cohesion', c Friction Moist Unit Saturated Unit Stratum Value (psf) Angle, Weight2 (pcf) Weight3'4(pcf) (bpf) (degrees) A-I <2 Lab. test Lab.test Lab. test Lab. test A-I <5 50(2.4 kPa) 28 100(16 kN/m3) 107(17.1 kN/m3) A-II >5_20 _ 50(2.4 kPa) 30 108 (17.3 kN/m3) 115 (18.4 kN/m3) A-III >20 50(2.4 kPa) 32 115 (18.4 kN/m3) 122 (19.5 kN/m3) Notes: 1. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water Stratum T -Terrace—These soils generally consist of coarse-grained silty and clayey sands and gravels with discontinuous lenses and thin layers of silts and clays. They are generally of low to medium plasticity but lenses of clay can be highly plastic. Typical SPT N60 values range from 5 to 50 bpf. Typical thickness is 5 to 40 feet. Table 2: Typical Engineering Design Properties (Terrace Deposits) Sub- SPT N60 Cohesion, c Friction Moist Unit Saturated Unit Stratum Value (psf) Angle, 4) Weight2(pcf) Weight3'4(pcf) (bpf) (degrees) T-I <2 Lab. test Lab. test Lab.test Lab. test T-I <10 150(7.2 kPa) 26 105 (16.8 kN/m3) 1 12(17.9 kN/m3) T-II >10<-30 150(7.2 kPa) 30 115 (18.4 kN/m3) 122(19.5 kN/m3) T-III >30 150(7.2 kPa) 34 125 (20 kN/m3) 132 (21.1 kN/m3) Notes: I. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water Stratum P—Potomac Formation—These soils generally consist of interbedded highly plastic and medium plasticity clays with lenses and thin layers of silt and sand and are classified as CH, MH, CL and ML. Generally, the fat clays and elastic silts are highly over-consolidated and can contain"slickensides"which are indicative of extremely effective residual friction angles. Typically blue-gray clays and elastic silts are locally termed "marine clays". Below a weathered zone with SPT N60 values of 10 to 30 bpf, SPT N60 values typically range from 30 to>100 bpf. Typical thickness is 5 to 40 feet. Table 3: Typical Engineering Design Properties (Potomac Formation) Sub- SPT N60 Cohesion', c Friction Moist Unit Saturated Unit Stratum Value (psf) Angles,4) Weight2(pcf) Weight3'4(pcf) (bpf) (degrees) P-I <2 Lab. test Lab.test Lab. test Lab. test P-I <10 150 (7.2 kPa)4 204 100(16 kN/m3) 107 (17.1 kN/m3) P-II >10<_30 250(12 kPa)4 244 110(17.6 kN/m3) 117 (18.7 kN/m3) P-Ill >30 350(16.8 kPa)4 284 120(19.2 kN/m3) 127(20.3 kN/m3) Notes: 1. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water 5. Use effective residual friction angles of 10 degrees(no cohesion)for fat clays or elastic silts Decomposed/Weathered Rock—See Piedmont Physiographic Province Rock—See Piedmont Physiographic Province Fill Soils (Sands, Clays, Silts)—These soils consist of compacted fill derived from soils of strata A, P or T. These parameters do not apply to fat clays or elastic silts which must be designed based upon appropriate laboratory testing. Parameters for existing fill soils must be evaluated on a project-specific basis considering the potential for material type variation within the fill embankment as well as the potential for variability in consistency/relative density. Parameters for existing fill may be based upon the in-situ "N"value but shall not exceed the maximum value listed for strata A, T or P above and new fill below. Table 4: Typical Engineering Design Properties (Fill Soils—Coastal Plain) Stratum Degree of Cohesion, c Friction Moist Unit Saturated Unit Compaction (psf) Angle, 4) Weight2(pcf) Weight3'4(pcf) (degrees) NEW >95% of 50(2.4 kPa) 30 110(17.6 kN/m3) 117 (18.7 kN/m3) FILL VTM-1 Notes: I. Cohesion to be neglected below the ground water table 2. Natural condition,above the groundwater table 3. Saturated condition,below the groundwater table 4. Submerged(or buoyant)unit weight=Saturated unit weight—Unit weight of water Groundwater—Depth to groundwater is highly variable but is generally greater than 30 feet near the Fall Line. Groundwater is often encountered within a few feet of the surface adjacent to the Potomac River. Perched water tables are frequently encountered above clays of the Potomac Formation and"quick" or"running" sand conditions are typically encountered in soils overlying weathered rock or in layered clay deposits. References: 1. Gardner, S.W., "Design of Drilled Piers in the Atlantic Piedmont", Proceedings, Foundations and Excavations in Decomposed Rock of the Piedmont Province, ASCE, Geotechnical Special Publication No. 9, 1987 2. White, R.M. and Richardson, T.L., "Investigation of Excavatability in the Piedmont, Proceedings, Foundations and Excavations in Decomposed Rock of the Piedmont Province, ASCE, Geotechnical Special Publication No. 9, 1987 3. Wilson, C. and Martin, R., "Embankment Dams in the Piedmont/Blue Ridge Province", Proceedings, Design with Residual Materials,ASCE, Geotechnical Special Publication No. 63, 1996 4. Peterson, M., Brand, S, Roldan, R, and Sommerfield, G., "Residual Soil Characterization for a Power Plant", Proceedings, Behavioral Characteristics of Residual Soils, ASCE, Geotechnical Special Publication No. 92, 1999 5. Obermeier, S.F. and Langer, W.H., "Relationships between Geology and Engineering Characteristics of Soils and Weathered Rocks of Fairfax County and Vicinity, Virginia", U.S. Geological Survey Professional Paper 1344, 1986 6. Bowles, J.E., "Physical and Geotechnical properties of Soils", 2nd. Edition, McGraw-Hill, 1985 7. "Steel Sheet Pile Design Manual" Pile Buck, 1987 8. Hunt, Roy E., "Geotechnical Engineering Techniques and Practices", McGraw- Hill, 1986 Standard Penetration Test (SPT) "N" Value Correction to No Based upon our experience, the most significant corrections are for hammer energy, CE, and length of rods, CR. Corrections for automatic hammers have been recognized on projects where N values determined with automatic hammers are significantly less than N values determined with safety hammers. While there may be small differences in efficiency between different automatic hammers, we have assumed a 80% efficiency for automatic hammers and a 60% efficiency for safety hammers. This results in a hammer energy correction factor of 1.33 (80/60) for automatic hammers and a correction factor of 1 for manual hammers. The correction factors for length of rods are taken from Youd and Idriss, 1977, as follows: Table 1: Rod Length Correction Factor, CR (after Youd and Idriss, 1997) Rod Length (feet) C R <13 0.75 13-20 0.85 20-30 0.95 30-100 1.00 >100 <1.00 N60 =NfieldXCEXCR Although there are other correction factors for overburden, borehole diameter, liners, anvils, blow count frequency and hammer cushions, these have not been applied since they tend to unreasonably increase the corrected N value, based upon our experience. Metric Conversion Factors 1 pcf= 0.16 kN/m3 1 psf= 0.0479 kPa Q:\mat\soil correlations\Soil Design Properties for Sound Barrier Walls,Retaining Walls,and non-Critical Structures 4-14-1 l.doc Appendix D SLIDE Output Files 0 • co uo Material Name Color Unit Weight Cohesion Phi Strength Type (lbs/ft3) (psf) (deg) Riprap 110 Mohr-Coulomb 0 45 o Existing Fill 110 Mohr-Coulomb 0 20 IA 1.563 Proposed Fill 120 Mohr-Coulomb 0 32 Residual Soil lk 100 Mohr-Coulomb 0 28 Recommended Design o Weathered Rock 120 Mohr-Coulomb 0 34 v u) e" #57 Stone ■ 110 Mohr-Coulomb 0 45 zso.oD ig5n2 o 1 IN is 0 co v i a co v -80 -60 -40 -20 0 20 40 60 80 100 120 Project SLIDE -An Interactive Slope Stability Program r,-,, , ! Analysis Descnptlon ♦�k yen Ci Drawn By Scale 1:257 Company Date 9/5/2018, 11:47:27 AM File Name Gordonsville-Section A- Final.slmd 'SL1DEINTERPRE7 8.016 9/21/2018 204052128.htm Slide Analysis Information Gordonsville-Section A-Final Project Summary File Name: Gordonsville•Section A-FlnaLslmd Slide Modeler Version: 8.016 Project Title: SLIDE-An Interactive Slope Stability Program Date Created 9/5/2018,11:47:27 AM Currently Open Scenarios Group Name Scenario Name Global Minimum Compute Time Gordonsville Substation A Master Scenario Spencer:1.190030 00h:00m:03.996s Recommended Design Spencer:1.563100 O0h:00m:07.949s General Settings Units of Measurement: Imperial Units Time Units: days Permeability Units: feet/second Data Output: Standard Failure Direction: Left to Right Analysis Options All Open Scenarios Slices Type. Vertical Analysis Methods Used Spencer Number of slices: 50 Tolerance: 0.005 Maximum number of iterations: 75 Check malpha<0.2: Yes Create Interslice boundaries at intersectons Yes with water tables and pierce: Initial trial value of FS: 1 Steffensen Iteration: Yes Groundwater Analysis All Open Scenario Groundwater Method: Water Surfaces Pore Fluid Unit Weight Ilbs/e3]: 62.4 Use negative pore pressure cutoff: Yes Maximum negative pore pressure Ipsp: 0 Advanced Groundwater Method: None Random Numbers All Open Scee.dos Pseudorandom Seed: 10116 Random Number Generation Method: Park and Miller e3 Surface Options All Open Scenarios Search Method: Auto Refine Search Divisions along slope: 20 Order per division: 10 Number of iterations: 10 Divisions to use in next iteration: 50% Number of vertices per surface: 12 Minimum Elevation: Not Defined Minimum Depth DO: 3 Minimum Area: Not Defined Minimum Weight: Not Defined Seismic Loading All Own Saeoadps Advanced seismic analysis: No Staged pseudostatic analysis: No Loading All Open Scenarios • contributed Load present Distributed Load 1 Distribution: Constant Magnitude Ipsf]: 250 Orientation: Vertical Materials file:///C:/Users/clynch/AppData/Local/Temp/RocscienceTempSlidelnterpret_7/204052128.htm 1/6 9/21/2018 204052128.htm ho8er(y Rlprep Existing Filln Proposed Ftll Reeldel Soil Weathered Rock 11575tone Color Strength Type Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb aUnit Weight llbs/ft31 110 110 120 100 120 110 Cohesion[psi] 0 0 0 0 0 0 Faction Angler 45 20 32 28 34 45 Water Surface Assigned per scenario Assigned per scenario Assigned per scenario Assigned per scenario Assigned per scenario Assigned per scenario Ru Value 0 0 0 0 0 0 Materials In Use M1�ateInal Master Scenario A Recommended Design Riprap❑II�� Existing sill Proposed HIE �l Residual Soil El Weathered Rock El � es7 Stone El r Global Minimums Gordonsville Substation-Meseer Scenario Gordonsville Substation-Recommended Design S Method:spencer Method:spencer FS 1.190030 FS 1.563100 Axis location. 23.592,535.242 Axis Location: 25.399,557.556 Left Slip Surface Endpoint: -1.716,519.447 Left Slip Surface Endpoint: -13.910,519.430 Right Slip Surface Endpoint: 21.043,505.519 Right Slip Surface Endpoint: 32.315,503.233 Resisting Moment: 121847 lb-ft Resisting Moment: 1.47533.06 lb-ft ' Driving Moment: 1023901b-ft Driving Moment: 943846 lb-ft • Resisting Horizontal force: 355883lb Resisting Horizontal Force: 22768.8 lb Driving Horizontal Force: 2990.54 lb Driving Horizontal Force: 14566.41b Total Slice Area: 60.6357 ft2 Total Slice Area: 382.288 ft2 Surface Horizontal Width: 22.7596 ft Surface Horizontal Width: 46.2241 ft Surface Average Height: 2.66418 ft Surface Average Height: 8.27032 ft Global Minimum Coordinates Gordonsville Substation-Master Scenario S Gordonsville Substation-Recommended Design Method:spencer Method:spencer C 3 S 3 -1.71614 519.447 -13.9096 519.43 -1.33491 518.759 -12.4637 517.739 -0.930984 518.067 -10.8951 515.904 -0.52696 517.375 .9.32646 514.122 0.0902595 516.755 -8.33348 513.044 0.577543 516.268 -7A5209 512.098 1.06481 515.782 -5.96546 510.48 1.56582 515.287 -4.60676 509.028 2.06444 514.932 -3.26677 507.73 2.64508 514.308 -2.25681 506.752 3.22556 513.88 -1.2558 505.958 3.79915 513.458 0.575066 504.708 4.37581 513.036 2.40614 503.616 4.95247 512.62 4.23721 502.524 5.52913 S12.203 6.06844 501.776 6.24401 511.693 7.89966 501.139 6.95879 511.238 9.73101 500.561 7.54944 510.865 11.5624 499.983 8.1400e 510A92 13.3938 459.763 8.73071 510.12 15.2266 499.583 9.91182 509.439 17.0563 499.605 11.093 508.795 18.9062 499.668 12.2727 508.21 20.7989 499.957 13.3759 507.678 22.7239 500.293 14.0063 507.375 25.1165 500.711 14.6319 507.023 27.5092 501.232 15.7819 506.605 29.902 502.116 16.7015 506.339 32.3145 503.233 17.62 506.114 18.5384 505.935 19.6892 505.7113 21.0435 505.519 Valid/Invalid Surfaces Gordonsville Substation-Meter Scenario S Gordonsville Substation-Recommended Design fa' Method:spencer Method:spencer Number of Valid Surfaces 6418 Number of Invalid Surfaces: 12589 Number of Valid Surfaces: 6665 • Number of Invalid Surfaces: 12345 Error Codes: Error Codes: Error Code-105 reported for 1857 surfaces Error Code-106 reported for 5617 surfaces Error Code-105 reported for 3359 surfaces Error Code-108 reported for 580 surfaces Error Code-106 reported for 4738 surfaces Error Code•111 reported for 37 surfaces Error Code-108 reported for 703 surfaces Error Code.117 reported for Ill surfaces Error Code-111 reported for 2 surfaces Error Cods-11S reported for 4262 surfaces Error Code-112 reported for ll surfaces Error Code.123 reported for 225 surfaces Error Code-115 reported for 3479 surfaces Error Code-123 reported for 52 surfaces Error Code-124 reported for 1 surface Error Codes The following errors were encountered during the compuf000n: file:///C:/Users/clynch/AppData/Local/Temp/RocscienceTempSlidelnterpret_7/204052128.htm 2/6 9/21/2018 204052128.htm -105=4Aore than two surface/slope Intersections with no valid slip surface. -106=Avenge slice width is less than 0.0001 a(maximum horlaontal extent of soil region).This limitation is imposed to avoid numerical errors which may result from too many slices,or too small a slip region. -108=Total driving moment Of total driving force<0.1.This Is to limit the calculation of extremely high safety factors If the drlslng force Is very small(0.i is an arbitrary number). -111=safety factor equation did not converge 4 -112=The welfident M.Alpha=cos(alpha)(1.ta6alpha)fanlphl)/F)<0.2 for the final Iteration of the safety factor calculation.This screens out some slip surfaces which may not be valid In the context of the analysis,in particular,deep seated slip surfaces with many high negative base angle slices in the passive lone. -115=Surface too shallow,below the minimum depth. -123=Surface radius equal or less than the internal cutoff of 0.01. -124=A slice has a width less than the minimum acceptable value. Slke Data GoedMpllle Substation-Master Scenario S Gordonsville Substation-Recommended Maims• • Global Minimum Gum(spencer)-Safety Factor.1.19003 • 61.60 Mlnknam Qtsry(xtanar)-Safety Factor:15631 Angle Mu den .Mar BMus Mse Pon Medlin Bate Meal. Angle Bid Bess Shear Shear MuPore Effective Bid Whelks Silo Width Weight of Slla Ban f4dsdon FrictifrictionB1rnt Streinglln Prwun Normal Normal Martial Verbal Slice Width Weight of Bike Mu t4drsbn S6Mc StntgN huxnn Stress Normal Norm Vntlal Vulkel u NomWr lBl libel BaBStressMaterial [pal Angle Ipe9 (peel Stress Ip� StressStressstria Stress Number NO IIM Mu I MaterialMaterialAngle IBsfl IPA Stra Ip� Suess Stress Stress Mersin] (degrees' lPd1 IPA IPA WWI [degrees] 194 Idea«sl MarlIw9 WWI lMl 1 0.38123 14.4476 -61.0062 Ripnp 0 45 10.4249 12.406 12.406 0 12.406 31.2179 31.2179 1 0.722957 36.7117 -49.4679 Proposed 0 32 67.4 105.353 168.6 0 168.6 247.426 247.426 2 0.403922 46.0085 -59.718 Riprap 0 45 32.7109 38.9269 38.9269 0 38.9269 94.9451 94.9451 Fill 3 0.362813 67.5721 -59.718 Riprap 0 45 53.4856 63.6495 63.6495 0 63.6495 155.245 155.245 2 0.722957 110.135 -49.4679 Proposed 0 32 91.8175 143.52 229.68 0 229.68 337.063 337.063 Fill 4 0.0412108 9.25516 -59.718 Proposed 0 32 46.0256 54.7719 87.6534 0 87.6534 166.474 166.474 Fill 3 0.784263 202.501 -49.4679 Proposed 0 32 115.977 181.284 290.115 0 290.115 425.753 425.753 5 0.61722 162.767 45.1456 Proposed 0 32 77.1083 91.7612 146.848 0 146.848 224.349 224.349 Fill Fill 4 0.784263 288.905 -49.4679 Proposed 0 32 141.12 220.584 353008 0 353.008 518.05 518.05 6 0.487283 148.279 -44.9583 Proposed 0 32 89.3288 106.304 170.122 0 170.122 259.321 259.321 Flit FM 5 0.784341 374.13 -48.6546 Proposed 0 32 168.351 263.15 421.128 0 421.128 612.452 612.452 Fill 7 0.487271 157.838 44.9583 Proposed 0 32 95.09 113.16 181.034 0 181.094 276.046 276.046 Fill 6 0.784341 458.11 -48.6546 Proposed 0 32 193.146 301.906 483.151 0 483.151 702.652 702.652 8 0.501005 172.107 -44.6703 Proposed 0 32 101.458 120.738 193.22 0 193.22 293.517 293.517 Fill Fill 7 0.992982 697.374 -47.3289 Proposed 0 32 225.72 352.823 564.635 0 564.635 809.493 809.493 9 0.498621 179.885 -42.3666 Proposed 0 32 111.76 132.998 212.842 0 212.842 314.774 314.774 FIll Fill 8 0.881393 725.471 .47.3266 Proposed 0 32 254.362 397.593 636.281 0 636.281 912.187 912.187 10 0.580637 218.653 -42.0748 Proposed 0 32 117.354 139.655 223.495 0 223495 329.439 329.439 Fill FIII 9 0.743303 685.026 -47.2581 Proposed 0 32 278.039 434.603 695.511 0 695.511 996.377 996.377 11 0.580481 224.927 -36.3619 Proposed 0 32 135.236 160.935 257.551 0 257.551 357.117 357.117 FIII Fill 10 0.743303 751.313 .47.2581 Proposed 0 32 299.203 467.684 748.451 0 748.451 1072.22 1072.22 12 0.573595 225.17 -36.3619 Proposed 0 32 137.008 163.04A 260.925 0 260.925 361.796 361.796 Fill Fill 11 1.35872 1543.18 .46.8944 Proposed 0 31 330.931 517.278 827.818 0 827.818 1181.39 1181.39 13 0.576659 229.185 -36.1646 Proposed 0 32 139.241 165.701 265.177 0 265.177 366.954 366.954 Fill ill) 12 1.34 1725.12 -44.0822 Proposed 0 32 347.104 542.559 868.274 0 861.274 1204.43 120443 14 0.576659 231.739 -35.8641 Proposed 0 32 141.613 168.524 269.695 0 269.695 372.071 372.071 Fill Fill 13 1.00995 1426.57 -44.0822 Proposed 0 32 353.551 552.636 884.398 0 884.398 1226.8 1226.8 15 0.576657 234.121 -35.8418 Proposed 0 32 143.131 170.33 272.585 0 272.585 375.973 375.973 Fill Fill 14 0.365796 542.09 .384191 Proposed 0 32 405.131 633.261 1013.43 0 1013.43 1334.75 1334.75 16 0.357442 146.246 -35.5223 Proposed 0 32 145.133 172.713 276.398 0 276.398 380.006 380.006 Fill Fill 15 0.63522 967.187 -384191 Foisting Fill 0 20 254.781 398.248 1094.18 0 1094.11 1296.25 1296.25 17 0.357442 147.027 -35.5223 Proposed 0 32 145.908 173.635 277.874 0 277.874 382.035 382.035 16 0.915431 1444.67 .34.3323 Existing Fill 0 20 277.288 433.429 1190.84 0 1190.84 1380.22 1380.22 Fill 17 0.915431 1489.47 -34.3323 Existing Fill 0 20 285.887 446.87 1227.77 0 1227.77 1423.02 1423.02 18 0.35739 147.194 -32.4824 Proposed 0 32 154.851 184.277 294.906 0 294.906 393.49 393.49'i 18 1.18707 1922.87 -30.8062 Existing Fill 0 20 296.289 463.13 1272.44 0 1272.44 1449.11 1449.11 Fill 19 0.644002 1032.44 -30.8062 Residual 0 28 420.335 657.026 1235.69 0 1235.69 1486.32 1486.32 19 0.35739 146.791 -32.4824 Proposed 0 32 154427 183.773 294.099 0 294.099 392.413 392413I 561 FIII 20 0.915537 1451.99 .30.8062 Residual 0 28 415.82 649.969 1222.42 0 1222.42 1470.36 1470.36 20 0.590646 241.598 -32.256 Proposed 0 32 154.455 183.806 294.151 0 294.151 391.627 391.627 Soil Fill 21 0.915537 1433.36 -30.8062 Residual 0 28 410.484 641.628 1206.72 0 1206.72 1451.48 1451.48 21 0.590645 240.257 -32.2396 Proposed 0 32 153.646 182.843 292.609 0 292.609 389.514 389.514 i Soil Fill 22 0.915612 1406.82 -22.2273 Residual 0 28 448.902 701.678 1319.67 0 1319.67 1503.11 1503.11 22 0.59063 238.902 -32.2396 Proposed 0 32 152.783 181.816 290.967 0 290.967 387.327 387.327 Soil Fill 23 0.915612 1372.42 .22.2273 Residual 0 28 437.927 684.523 12117.4 0 1287.4 1466.35 1466.35 23 0.393702 157.99 -29.9456 Proposed 0 32 158.315 188.4 301.504 0 301.504 392.707 392.707 561 Fill 24 0.915611 1340.46 -19.1806 Residual 0 28 444.179 694.296 1305.78 0 1305.78 1460.29 1460.29 24 0.393702 156.374 -29.9456 Proposed 0 32 156.697 186.474 298.421 0 298.421 388.691 388.691 Soli Fill 25 0.915611 1309.27 -19.1806 Residual 0 28 433.846 678.14A 1275.4 0 1275.4 1426.32 1426.32 25 0.393702 154.759 -29.9456 Proposed 0 32 155.078 184.548 295.339 0 295.339 384.678 384.678 1 Soil Fill 26 0.915675 1283.07 -17.5125 Residual 0 28 434.009 678.4 1275.89 0 1275.89 1412.84 1412.84 26 0.59057 228.482 -28.6245 Proposed 0 32 156.493 116.231 298.032 0 298.032 383.441 383.441 Soil Fill 27 0.915675 1256.77 -17.5125 Residual 0 28 425.112 664.493 1249.73 D 1249.73 1383.87 1383.87 27 0.59057 223.579 -28.6245 Proposed 0 32 153.135 182.235 291.636 0 291.636 375.213 375.213 Soil Fill 28 0888959 1194.94 -17.5125 Residual 0 28 416.346 650.79 1223.96 0 1223.96 1355.33 1355.33 28 0.393247 145.693 -26.3731 Propped 0 32 156.381 186.098 297.82 0 297.82 375.356 375.356 Soil Fill 29 0.888959 1170.15 .17.5125 Residual 0 28 407.708 637.289 1198.57 0 1198.57 1327.21 1327.21 29 0.393247 142.592 -26.3731 Proposed 0 32 153.052 182.137 291.479 0 291.479 367.365 367.365 Soil Fill 30 0.0534312 69.5342 .17.5125 Weathered 0 34 513.629 802.853 1190.28 0 1190.28 1352.35 1352.35 30 0.393247 139491 -26.3731 Proposed 0 32 149.724 178.176 285.141 0 285.141 359.377 359.377 Rock Fill 31 0.915733 1166.32 .6.84225 Weathered 0 34 586.709 917.085 1359.63 0 1359.63 1430.03 1430.03 31 0.367721 127.516 .25.7183 Proposed 0 32 148.199 176.361 282.237 0 282.237 353.618 353.618 Rock Fill 32 0.915733 1117.24 -6.84225 Weathered 0 34 562.022 878.497 1302.43 0 1302.43 1369.86 1369.86 32 0.367721 124.575 -25.7183 Proposed 0 32 144.78 172.293 275.727 0 275.727 345.462 345.462 Rack Fill 33 0.916372 1067.82 -5.62801 Weathered 0 34 546.807 854.714 1267.17 0 1267.17 1321.05 132105 33 0.367721 121.634 -25.7183 Proposed 0 32 141.362 161.225 269.217 0 269.217 337.306 337.306 Rock Fill 34 0.916372 1016.51 -5.62801 Weathered 0 34 520.535 813.6411 1206.28 0 1206.28 1257.58 1257.58 34 0.630394 201.676 -25.7183 Proposed 0 32 136.723 162.704 260.381 0 260.381 326.235 326.235 Rock Fill 35 0.914848 958.088 0.692667 Weathered 0 34 543.825 850.053 1260.26 0 1260.26 1253.68 1253.68 35 0.625663 191.616 -25.7183 Proposed 0 32 130.885 155.757 249.262 0 249.262 312.304 312.304 Rock Fill 36 0.914848 895.841 0.692667 Weathered 0 34 508.493 794.826 1178.38 0 1178.38 1172.23 1172.23 36 0.383337 112.543 -22.184 Proposed 0 32 134.214 159.719 255.603 0 255.603 310.332 310.332 Rock Fill 37 0.924983 841.363 1.94099 Weathered 0 34 482.472 754.152 1118.08 0 1118.08 1101.73 1101.73 37 0.383337 108.043 -22.184 Proposed 0 32 128.848 153.333 245.386 0 245.386 297.925 297.925 Rock FIII 38 0.924983 775.491 1.94099 Weathered 0 34 444.699 695.109 1030.54 0 1030.54 1015.47 1015.47 38 0.383337 103.544 -22.184 Proposed 0 32 123.483 146.948 235.166 0 235.166 285.518 285.518 Rock Fill 39 1.88268 1349.38 8.7534 Weathered 0 34 431.131 673.901 999.099 0 999.099 932.715 932.715 39 0.00648939 1.71383 -16.1106 Proposed 0 32 135.99 161.832 258.986 0 258.986 298.264 298.264 Rock FIII 40 0.250093 154.804 9.82339 Weathered 0 34 310.477 594.723 881.714 0 881.714 815.834 815.834 40 0.456534 116.215 -16.1106 Riprap 0 45 228.838 272.324 272.323 0 272.323 338.42 338.42 Rock 41 0.456534 107.638 -16.1106 Rlprap 0 45 211.95 252.227 252.226 0 252.226 313.445 313.445 41 0.842443 477.477 9.82339 Residual 0 28 256.524 400.972 754.118 0 754.118 709.701 709.701 42 0.459257 99.1191 -13.7716 Riprap 0 45 207.605 247.056 247.055 0 247.055 297.938 297.938 Soil 43 0459257 89.425 .13.7716 Rlprap 0 45 187.3 222.893 222.893 0 222.893 268.8 268.8 42 0.842443 460.552 9.82339 Residual 0 28 247.431 386.759 727.387 0 727.387 684.544 684.544 44 0.459219 79.1419 -11.0253 Riprap 0 45 180.282 214.541 214.541 0 214.541 249.667 249.667 Soil 45 0.459219 68.2836 -11.0253 Rlprap 0 45 155.547 185.106 185.106 0 185.106 215413 215.413 43 1.19632 623.994 9.93006 Residual 0 28 236.503 369.678 695.263 0 695.263 653.859 653.859 Soil 46 0.5753,19 70.1124 -10.6604 Riprap 0 45 128.947 153.451 153451 0 153451 177.724 177.724 44 1.19632 587.024 9.93006 Residual 0 28 222.491 347.775 654.069 0 654.069 615.118 615.118 47 0.575399 52.8245 -10.6604 Rlprap 0 45 97.1522 115.614 115.614 0 115.614 133.902 133.902 Soil 48 0.451405 28.8833 .8.38964 Rlprap 0 45 72.9473 86.8095 86.8095 0 86.8095 97.5679 97.5679 45 1.19632 511.111 12.2717 Residual 0 28 201.819 315.464 593.302 0 593.302 549.402 549.402 49 0451405 17.33 -8.38964 Ripap 0 45 43.7684 52.0857 52.0858 0 52.0858 58.5409 58.5409 Soil 50 0.451405 5.77666 -8.38964 Rlprap 0 45 14.5927 17.3658 17.3658 0 17.3658 19.518 19.518 46 1.19632 369.116 12.2717 Residual 0 28 145.751 227.823 428.473 0 428.473 396.77 396.77 Soil 47 1.1964 234.592 20.2817 Residual 0 28 108.94 170.284 320.257 0 320.257 279.9,39 279.999 Soil 48 1,1964 160.075 20.2817 Residual 0 28 74.3356 116.194 218.529 0 218.529 191.059 191.059 Soil 49 1.20628 101.047 24.842 Residual 0 28 52.1858 81.5716 153.414 0 153.414 129.255 129.255 Soil 50 1.20628 33.6825 24.842 Residual 0 28 17.3991 27.1965 51.1491 0 51.1491 43.0942 43.0942 Soil file:///C:/Users/clynch/AppData/Local!Temp/RocscienceTempSlidelnterpret_7/204052128.htm 3/6 9/21/2018 204052128.htm Interstice Data 1 Gordonsville Substaton-Master Scenario t11 Gordonsville Substation-Recommended Design* • Global Minimum Query(spencer)-Safety Factor:1.19003 • Global Minimum Query(spencer)-Safety Factor:1.5631 X 3 Interstice Interstice Intersllce X Y Interstice Interstice Intel-skit Nulmeber coordinate coordinate-Bottom Normal Force Shear Force Force Angie Number coordinate coordinate-Bottom Normal Force Shear Force Force Angle Iftl Ift) pbsl [16s1 [degrees) IN) ift) libel Libel [degrees) 1 -1.71614 519.447 0 0 0 1 .13.9096 519.43 0 0 0 2 .1.33491 513.759 4.56017 2.54641 29.1791 2 13.1866 518.584 93.8268 34.6426 20.2651 3 -0.930984 S18.067 18.2743 10.2044 29.1791 3 -12.4637 517.739 221.645 81.8354 20.2651 4 -0.568171 517.446 38.4162 21.4517 29.1791 4 -11.6794 516.822 396.785 146.501 20.2652 S -0.52696 517.375 42.7055 23.846E 29.179 5 -10.8%1 515.904 609.894 225.184 20.2651 6 0.0902595 516.755 86.2123 48.1411 29.1791 6 -10.1108 515.013 853.23 315.028 20.2651 7 0.577543 516.268 125.461 70.0576 29.1791 7 -9.32646 514.122 1131.4 418.105 20.2652 8 1.06481 515.782 167.24 93.3869 29.179 8 -8.33348 513.044 1516.48 559.912 20.2651 9 1.56582 515.287 212.105 118.44 29.1791 9 -7.45209 512.088 1900.6 701.737 20.2651 10 2.06444 514.832 253.173 141.373 29.1792 10 -6.70879 511.284 2253.35 831.979 20.2651 11 2.64508 514.308 302.185 168.741 29.1791 11 -5.96548 510.48 2632.95 972.135 20.2651 12 3.22556 513.88 333.753 186.368 29.179 12 -4.60676 509.028 3385.03 1249.82 20.2651 13 3.79915 513458 365.355 204.015 29.1791 13 -3.26677 507.73 4046.71 1494.12 20.2651 14 4.37581 513.036 396.833 221.593 29.1792 14 .2.25681 506.752 4554.68 1681.67 20.2651 15 4.95247 512.62 427.602 238.774 29.1791 15 -1.89102 506.462 4700.5 1735.51 20.2651 16 5.52913 512.203 458.606 256.087 29.1791 16 -1.2558 505.958 5089.92 1879.3 20.2652 17 5.88657 511.948 477.258 266.502 29.1791 17 -0.340366 505.333 5580.62 2060.47 20.2651 18 6.24401 511.693 496.01 276.973 29.1791 18 0.575066 504.708 6086.54 2247.26 20.2651 19 6.6014 511.465 507.767 283.538 29.1791 19 1.76214 504 6635.47 2449.94 20.2651 20 6.95879 511.238 519.491 290.085 29.179 20 2.40614 503.616 6839.27 2525.19 20.2651 21 7.54944 510.865 537.91 300.37 29.1791 21 3.32168 503.07 7115.9 2631.01 20.265 22 8.19008 510.492 556.163 310.563 29.1791 22 4.23721 502.524 740834 2735.48 20.2651 23 8.73071 510.12 574.313 320.698 29.1791 23 5.15283 502.15 7491.59 2766.04 20.2651 24 9.12441 509.893 5E0.367 324.078 29.1791 24 6.06844 S01.776 7572.32 2795.84 20.2651 25 9.51812 509.666 586.358 327.424 29.1791 25 6.98405 501.457 7581.51 2799.24 20.2651 26 9.91182 S09.439 592.288 330.735 29.1791 26 7.09966 501.139 7599.5 2802.55 20.2651 27 10.5024 509.117 595.929 332.768 29.1791 27 8.81534 500.85 7561.73 2791.93 20.2651 28 11.093 508.795 599.491 334.757 29.1791 28 9.73101 500.561 753355 2781.53 20.2651 29 11.4862 508.6 596.064 332.843 29.1791 29 10.62 500.181 7506.76 2771.63 20.265 30 11.11795 508.405 592.709 330.97 29.1791 30 11.5089 500 748052 2761.95 20.2651 31 12.2727 508.21 589.427 329.137 29.1791 31 11.5624 499.983 7973.14 2759.22 20.2651 32 12.6404 508.033 584.92 326.62 29.179 32 12.4781 499.873 7085.27 2616.01 20.2651 33 13.0081 507.856 580.517 324.162 29.1791 33 13.3938 499.763 6713.72 2478.83 202651 34 13.3759 507.678 576.218 321.761 29.1791 34 14.3102 499.673 632707 2336.07 20.2651 35 14.0063 507.375 569.089 317.781 29.1791 35 15.2266 499.583 5958.99 2200.17 20.2651 36 14.6319 507.073 562.317 313.999 29.1791 36 16.1414 499.594 5947.54 2011.33 20.2651 37 15.0153 506.917 550.821 307.58 29.1791 37 17.0563 499.605 4969.31 1834.26 20.2651 36 15.3986 506.761 539.786 301.417 29.179 38 17.9813 499.636 4987.98 1657.05 20.2651 39 15.7819 506.005 529.209 295.512 29.1791 39 18.9062 499.668 4044.34 1493.24 20.265 40 15.7884 506.603 528.812 295.29 29.1791 40 20.7889 499.957 2943.03 1086.62 20.2651 41 16.245 506.471 460.249 257.004 29.1791 41 21.039 500.001 2809.59 1037.39 20.2651 42 16.7015 506.339 396.746 221.544 29.1791 42 21.8815 500.147 2483.58 916.985 20.2651 43 17.1607 506.226 329.212 183.832 29.179 43 22.7239 500.293 216903 800.848 20.2651 44 17.62 506.114 268.282 149.809 29.179 44 23.9202 500.502 1740.99 642.62 20.265 45 18.0792 506.024 204.689 114.299 29.1791 45 25.1165 500.711 133733 493.767 20.2651 46 18.5384 505.935 149.821 83.6601 29.179 46 26.3128 500.972 941.5 347.619 20.2651 47 19.1138 505.827 92.2448 51.5097 29.1791 47 27.5092 501.232 655.638 242.074 20.2651 48 19.6892 505.718 48.8657 27.2867 29.1791 48 28.7056 501.674 383.707 141.672 20.2651 49 20.1406 505.652 21.7162 12.1264 29.1791 49 29.902 502.116 198.154 73.162 20.265 50 20.592 505.585 5.42646 3.03015 29.1791 50 31.1082 S02.675 49.5284 18.2868 20.2651 51 21.0435 505.519 0 0 0 51 32.3145 503.233 0 0 0 Entity Information Group:Gordonsville Substation A Shared Entitles file:///C:/Users/clynch/AppData/Local/Temp/RocscienceTempSlidelnterpret_7/204052128.htm 4/6 9/21/2018 204052128.htm e Type Coordinates X Y -78.969 519.356 4 .78.917 516.282 -78.917 504 -78.917 500 -78.917 465.629 95.834 465.629 95.834 504.422 33.9207 504.304 Eatemal Boundary 32.3145 503.233 28.3145 503.233 26.8818 504.188 25.3145 505.233 21.0435 505.519 0.0254102 519.452 -3.5784 519.441 -5.9531 519.439 -7.93529 519.437 X Y Material Boundary -78.917 516.282 -32.798 510.623 X Y -32.798 510.623 -28.0855 508.823 -13.1255 507.823 3.38453 505.823 5.89928 5115.603 13.044 504.979 15.044 504.804 Material Boundary 17.046 504.629 19.0268 504.456 19.0279 504.185 19.0435 503.445 21.0435 500.445 21.0435 504.28 21.2982 504.257 22.9145 504.123 26.8818 504.188 X Y .3.5784 519.441 Material Boundary 15.094 507.096 17.046 505.769 19.0268 504.456 X Y Material Boundary 21.0435 504.28 21.0435 505.519 X Y -78.917 500 11.503 500 13.044 500 Material Boundary 15.044 500 17.046 50D 19.0435 500 21.039 500 95.808 500 X Y -78.917 504 7.50264 504 13.044 504 Material Boundary 15.044 504 17.046 504 19.0279 504 19.0279 504.155 19.0279 504.185 X Y Material Boundary 95.808 500 95.834 504.422 X Y 19.0279 504 Material Boundary 190319 503.083 19.0435 500.445 X Y Material Boundary 19.0435 500 19.0435 500.445 X Y Material Boundary 21.039 500 21.0435 500.445 X Y 17.046 500 Material Boundary 17.046 504 17.046 504.629 17.046 505.769 X Y 19.0268 504.456 Material Boundary 19.0279 504.155 19.0319 503.083 19.0435 500 Material Boundary X y 15.044 500 file:///C:/Users/clynch/AppData/Local/Temp/RocscienceTempSlidelnterpret_7/204052128.htm 5/6 9/21/2018 204052128.htm 15.044 504 15.044 504.814 15.044 505.53 15.044 507.096 • X Y Material Boundary -5.9531 519.439 15.044 505.53 X Y -7.93529 519.437 13.044 505.53 Materiel Boundary 13.044 504.979 13.044 504 13.044 500 X Y -7.93529 519.437 Material Boundary 5.89978 505.603 7.50264 504 11.503 50D X Y Materiel Boundary 21.039 500 28.3145 503.233 9wxrlo-besed Entities SYP Coordinates Master Scenario Recommended Design X Y Constant Distribution Constant Distribution Distributed Load -4.07428 519.44 Orientation:Vertical Odentadon:Vertical -18.0E12 519.39.3 Magnitude:2501bs/ft2 Magnitude:250 lbs/ft2 Creates Excess Pore Pressure:No Creates Excess Pore Pressure:No file:///C:/Users/clynch/AppData/Local/Temp/RocscienceTempSlidelnterpret_7/204052128.htm 6/6