HomeMy WebLinkAboutSUB202000098 Calculations 2020-05-14SHIMP ENGINEERING, P.C.
Design Focused Engineering
May 14, 2020
Engineering Review
Albemarle County
Department of Community Development
401 McIntire Road
Charlottesville, VA 22902
Regarding: WPO 2020xxxxx Galaxie Farm Subdivision — Road Plan SWM Calculation Packet
Dear Reviewer,
Enclosed is the stormwater calculation packet for the Galaxie Farm Subdivision Road Plan. The project is
a private redevelopment of a site to create a subdivision served by public roads. The main purpose of stormwater
design for this site is to route offsite runoff safely through the site into the perennial stream, Cow Branch, which
flows through the site.
The culverts which lie under Road A, which serves as the only subdivision entrance, were designed for
the 25-yr storm. To size the culverts, the VDOT Inlet Control Headwater Depth nomograph was used. The flows
used in this nomographs resulted from the Southern Peidmont Rural Regression Equation, which is a VDOT-
accepted runoff calculation for road design.
If you have any questions about this calculation packet please do not hesitate to contact me at:
keane(cr�,shimp-en ing eering com or by phone at 434-299-9843.
Regards,
Keane Rucker, EIT
Shimp Engineering, PC
912 E. High St. Charlottesville, VA 22902 1434.227.5140 1 shimp-engineering.com
Contents:
Post-Dev Road Drainage Calculations:
Drainage Area Spreadsheet
Post-Dev Culvert Drainage Map
Post-Dev Inlet Drainage Map
TOC Calculations — NEH Lag Method
TOC Calcs — Seelye, Fig. 15-4, & Kirpitch
Rural Regression Equations
VDOT Appendix 8C-2 Inlet Control Nomograph
VDOT LD-204 Inlet Capacity
VDOT LD-229 Storm Drain Capacity
VDOT Outlet Protection Nomograph
Independent Reports:
Excerpt from NRCS Soils Report
NOAA Precipitation Report
Post-Dev Road Drainage Calculations:
Drainage Area Spreadsheet
Post-Dev Culvert Drainage Map
Post-Dev Inlet Drainage Map
TOC Calculations — NEH Lag Method
TOC Calcs — Seelye, Fig. 15-4, & Kirpitch
Rural Regression Equations
VDOT Appendix 8C-2 Inlet Control Nomograph
VDOT LD-204 Inlet Capacity
VDOT LD-229 Storm Drain Capacity
VDOT Outlet Protection Nomograph
Galaxie Farm
Inlet Drainage Area Summary
Impervious C
0.9
Pervious C
0.3
Woods C
0.2
To Inlet Area
Impervious Turf C A
G2
10,943,095
2,188,619 8,754,476
0.42
251.22
F4
18,600
11,440 7,160
0.67
0.43
F3
27,270
13,700 13,570
0.60
0.63
F2
1,248,870
90,432 1,158,439
0.34
28.67
F1
00
0 0
0.71
0.00
E9
468,399
132,173 336,226
0.47
10.75
E8A
20,483
14,310 6,173
0.72
0.47
E8
39,982
19,230 20,752
0.59
0.92
EX
1,702,368
510,710 1,191,657
0.22
39.08
E7A
10,746
7,344 3,402
0.71
0.25
E7
19,955
9,973 9,982
0.60
0.46
E6Z
00
0 0
0.30
0.00
E6A
17,762
12,437 5,325
0.72
0.41
E6
29,652
12,140 17,512
0.55
0.68
E5
55,189
26,235 28,954
0.59
1.27
E4
6,430
5,100 1,330
0.78
0.15
E3
17,780
12,446 5,334
0.72
0.41
E2
26,021
16,731 9,290
0.69
0.60
D3
51,625
18,486 33,139
0.51
1.19
D2
22,451
8,890 13,561
0.54
0.52
C3
12,692
10,935 1,757
0.82
0.29
C2
6,038
5,570 468
0.85
0.14
B2
14,726,791
3,092,626 11,634,165
0.43
338.08
A2
5,802,223
1,160,445 4,641,778
0.42
133.20
Ditch 1
159,704
38,751 120,953
0.45
3.67
\._aQo ��s e� GALAXIE FARM
,�,gg "J o� °o= / I _ ;,��r,,,,, POSTDEVINLET
49
�10i —, DRAINAGE MAP
j Lr-3 U
��'�a�Q�a
3, 0 loll
<9
ADD 0
a C;3 a, r-
r
01, _4>
C3
T,OQ (?/ /i/ l i— 8.0'8 7C 2 f �j`
/ZC1
JA_L-T4Xa2�\
0
33 AC
/25 2
G
Ap
T
t9 161
C>
1
GALAXI E FARM
POSTDEV INLET
DRAINAGE MAP
41
0.52 AC�1/
TO D / % —IRK jJ J / � H ETFLOW
0 43 �o �. , // �A / / /�OFF
{j
0.6 AC TO F3 4 1.19 AC i �/� �,,4 / EA
R TO D3 / /�/ A,ti� / / /
a� / / / ♦,
r Iso ��//�/ gt
26.61 AC TO F2 / / ! o Di
\Ai _
0.14 AC TO C2''o- �
- _ --
0.29 AC TO C3 aT �� Q _ �'
a
— I o/
- ---- \
� I SHEETFLOW
1 In'
�RUNOFF j
TO E9
12.62 AC — ao o // // / �'j F ,� AREA
/ � � I 1
0. 0.48 A O E7
.6 A
E6 1.27 AC T E5
E6 _
II r51.47 C A o T A o 61
E� 0.60 o
A A -' A TO E2
! I
8r y� D o— 1 ](I
�. ow
WooIc ss
. I
max— l
— -
>o �f
- - A
_- —496-
488 �
39.08 AC TO VC `-- — ^
3.67 AC TO DITCH 1
'
000
1 100 0 100 200 300
/ MEMENEEMEN �7
Scale: 1 "=100'
1
Chapter 15 Time of Concentration Part 630
National Engineering Handbook
630.1502 Methods for estimating
time of concentration
Two primary methods of computing time of concentra-
tion were developed by the Natural Resources Conser-
vation Service (NRCS) (formerly the Soil Conservation
Service (SCS)).
(a) Watershed lag method
The SCS method for watershed lag was developed
by Mockus in 1961. It spans a broad set of conditions
ranging from heavily forested watersheds with steep
channels and a high percent of runoff resulting from
subsurface flow, to meadows providing a high retar-
dance to surface runoff, to smooth land surfaces and
large paved areas.
L _ dos (S+lf , e
1,900Yo.5 (q 15-4a )
Applying equation 15-3, L=0.6T,, yields:
fo.s (S+l)o.,
T� = 1,140Y05 (eq.15-4b)
where:
L = lag, h
T, = time of concentration, h
t = flow length, ft
Y = average watershed land slope, %
S = maximum potential retention, in
1,000 _ 10
cn'
where:
cn' = the retardance factor
Flow length ( e )—In the watershed lag method of
computing time of concentration, flow length is de-
fined as the longest path along which water flows from
the watershed divide to the outlet. In developing the
regression equation for the lag method, the longest
flow path was used to represent the hydraulically most
distant point in the watershed. Flow length can be
measured using aerial photographs, quadrangle sheets,
or GIS techniques. Mockus (USDA 1973) developed an
empirical relationship between flow length and drain-
age area using data from Agricultural Research Service
(ARS) watersheds. This relationship is:
i = 209A0.6 (eq. 15-5)
where:
i = flow length, ft
A = drainage area, acres
Land slope (Y), percent —The average land slope
of the watershed, as used in the lag method, not to be
confused with the slope of the flow path, can be deter-
mined in several different ways:
• by assuming land slope is equal to a weighted
average of soil map unit slopes, determined us-
ing the local soil survey
• by using a clinometer for field measurement to
determine an estimated representative average
land slope
• by drawing three to four lines on a topographic
map perpendicular to the contour lines and de-
termining the average weighted slope of these
lines
• by determining the average of the land slope
from grid points using a dot counter
• by using the following equation (Chow 1964):
Y _ 100(CI) (eq. 15-6)
A
where:
Y = average land slope, %
C = summation of the length of the contour lines
that pass through the watershed drainage area
on the quad sheet, ft
I = contour interval used, ft
A = drainage area, ft2 (1 acre = 43,560 ft)
Retardance factor —The retardance factor, cn', is a
measure of surface conditions relating to the rate at
which runoff concentrates at some point of interest.
The term "retardance factor" expresses an inverse
relationship to "flow retardance." Low retardance fac-
tors are associated with rough surfaces having high de-
grees of flow retardance, or surfaces over which flow
will be impeded. High retardance factors are associ-
ated with smooth surfaces having low degrees of flow
retardance, or surfaces over which flow moves rapidly.
(210-VI-NEH, May 2010) 15-5
GALAXIE FARM AO.8 * (S + 1)0.7
Time of Concentration Calculations TC _
1140 * Yo.s
POSTDEV TO E7C / POST POA 1 BYPASS III
>,= 2138 flow length
elevations: highest=
Y= 6.5% Avg Watershed Slope
cn= 72 curve number
S= 3.889 Max Retention
Tc= 0.484 hrs
POSTDEV TO G2 / POST POA 1 BYPASS IV
A= 4926 flow length
elevations: highest=
Y= 4.6% Avg Watershed Slope
cn= 72 curve number
S= 3.889 Max Retention
Tc= 1.122 hrs
POSTDEV TO B2 / POST POA 1 BYPASS V
),= 6920 flow length
elevations: highest=
Y= 16.2% Avg Watershed Slope
cn= 58 curve number
S= 7.241 Max Retention
Tc= 1.126 hrs
POSTDEV TO A2 / POST POA 2 BYPASS VI
>,= 5098 flow length
elevations: highest=
Y= 21.9% Avg Watershed Slope
cn= 58 curve number
S= 7.241 Max Retention
Tc= 0.759 hrs
624 lowest= 486
NEH 630.1502 (a) TOC -
Watershed Lag Method
TOC= 29.0 min.
692 lowest= 467.5
TOC= 67.3 min.
1588 lowest= 467.5
TOC= 67.6 min.
1581 lowest= 465
TOC= 45.5 min.
GALAXIE FARM
Time of Concentration Calculations
POSTDEV TO F2 / POST TO BMP 1
100 ft overland flow 2.0% slope
390 ft s. c. flow -woods 6.4% slope
849 ft channel
POSTDEV TO E9 / POST POA 1 BYPASS II
100 ft overland flow 4.0% slope
476 ft s. c. flow -woods 6.3% slope
810 ft channel
POSTDEV TO DITCH 1
100 ft overland flow 5.0% slope
298 ft s. c. flow -woods 15.6% slope
121 ft ditch
0.35 C-value
13.2 min
Seelye Chart
1.3 fps velocity
5.0 min.
NEH Figure 15-4
30.0 ft height
5.3 min.
Kirpich Chart
TOC=
23.5 min.
0.35 C-value
12.9 min
Seelye Chart
1.3 fps velocity
6.3 min.
NEH Figure 15-4
56.0 ft height
4.0 min.
Kirpich Chart
TOC=
23.2 min.
0.35 C-value
12.2 min
Seelye Chart
1.9 fps velocity
2.6 min.
NEH Figure 15-4
1 ft height
1.7 min.
Kirpich Chart
TOC=
16.5 min.
Culvert A
A
E
L
133.2 Ac 927.5 ft
0.208 sq mi
4440 ft
0.84 mi
Southern Piedmont Regression Equations
Storm
Multiple -Parameter
Drainage -Area -Only
Q2
21.6A0.881E0.310L 0.423
48.5 cfs
122(A)0.635
45.0 cfs
Q10
38.8A0.848E0.379L- 0.430
147.1 cfs
335(A)0.596
131.5 cfs
Q25
54.8A0.852E0.392L 0.463
227.0 cfs
504(A)""'
202.5 cfs
Q50
74.3A0.860E0.390L- 0.495
301.5 cfs
661(A)0.170
270.2 cfs
Q100
.869E0.382L0.529
1101AO
384.8 cfs
849(A)u'9
353.1 cfs
Culvert B
A
E
L
338.1 Ac 927.5 ft
0.528 sq mi 1
6411 ft
1.21 mi
Southern Piedmont Regression Equations
Storm
Multiple -Parameter
Drainage -Area -Only
Q2
21.6A0.881E0.310L- 0.423
94.3 cfs
122(A)0.635 81.4 cfs
Q10
38.8A0.848E0.379L 0.430
276.8 cfs
335(A)0.596 229.0 cfs
Q25
54.8A0.852E0.392L 0.463
423.5 cfs
504(A)""' 347.9 cfs
Q50
74.3A0.860E0.390L- 0.495
560.0 cfs
661(A)0.170 459.4 cfs
Q100
.869E0.382L 0.529
1101AO
711.9 cfs
849(A)".559 594.3 cfs
Culvert G
A
E
L
251.2 Ac 927.5 ft
0.393 sq mi
6080 ft
1.15 mi
Southern Piedmont Regression Equations
Storm
Multiple -Parameter
Drainage -Area -Only
Q2
21.6A0.881E0.310L 0.423
74.2 cfs
122(A)0.635 67.4 cfs
Q10
38.8A0.848E0.379L 0.430
220.1 cfs
335(A)o.see 191.9 cfs
Q25
54.8A0.852E0.392L 0.463
337.0 cfs
504(A)0.581 292.7 cfs
Q50
74.3A0.860E0.390L- 0.495
445.3 cfs
661(A)0.570 387.9 cfs
Q100
1101AO.869E0.312L- 0.529
565.6 cfs
849(A)" "y 503.4 cfs
Chapter 8 - Culverts
Appendix 8C-2 Inlet Control, Circular Corrugated Metal
0
CHART 2
180
10,000
160
8,000 EXAMPLE
156
6,000 Dr 36 i1ches(3.0 feet)
--5,000 0•a6 efe
3)
144
4, 000 • 5. 6,
Hit HIN
132
3,000 D (feet) 5. 6.
-
120 F
2,000
108 u
131 e.2 a.a 4.
'0 in fast 3. 4.
4
— 1,000 3.
T96
D
or 184
Soo 3.
0
I-- ann
CULVERT B
Q25= 347.9 /2
=173.9 CFS
CULVERT A
w
U
7z
N
u
500
400
300
200
+
Q25=202.5/2
54
=101.2 CFS
"
'° _
so,
CULVERT G
Q10=191.9/2
U
0
42
/ � =
50
=96.0 CFS
Q
i
40
w
— s6
30 HW SCALE
o
STR. E7C
a
33
(FROM LD-204,
20 j11
1=6.5) Q=55.9
30
(21
0
ac
27
10 (31
o
e
<
N
24
6
2.
2.
1.34
1.30
L5
1.5
w
s
Z
r
1.o
I.o
"
a
w
1.0
ENTRANCE L
TYPE
9
Meedeall
Rltored to conform Q
w
to slope =
Projecting
T
.7
.7
5 To use scale (2) or (3) project
21 4 horfrantollf to Scale (1), teen
Vet strelghi inolihed line through
3 D and 0 stoles, ar raven• as
1 f3 llluetrand.
2
k5
I
i
L Iz
BUREAU OF PUBLIC ROADS JAN. 1983
Source: HDS-5
W
6 ,6
.6
.5
.5
HEADWATER DEPTH FOR
C. M. PIPE CULVERTS
WITH INLET CONTROL
NOTE: FOR CULVERTS A, B, & G, RUNOFF FLOW IQ.,
RESULTS FROM SOUTHERN PEIDMONT RURAL
REGRESSION EQUATION -- DRAINAGE AREA ONLY.
SINCE TWO (2) CULVERTS WILL BE USED, TOTAL
FLOW IS DIVIDED IN HALF FOR THIS NOMOGRAPH.
1 of 1 VDOT Drainage Manual
Galaxie Farm
LD-204 Stormwater Inlet Computations
Inlets on Grade Only
Sag Inlets Only
E
d
O
L
N
O
z
N
Q
O
C
>
N
O
O
O
O-
N
U
O-
N
U
Ol
U)
N
a
O
U
.T.
E
t
i
_
N
N
(n
N
x
X
3
d
U
O
=
O
~
U
O
C
id
'c
.10.
.lN.
_� t4
N
L
w
N
O_
O
-2
O
E
N
O
R
O
Q
O
U
U
F
N
O-
W
.0
m
'O_
2
'O
U
U
U
Ir
U
o
a
o
2
U
(L
1
2
3
4
5
6
1 8
9
1 10
11
12
13
14
15
16
17
18
19
1 20
21
22
23
24
(ft)
(ac)
I (in/hr)
(cfs)
I (cfs)
(cfs)
('/')
('/')
('/')
(ft)
(ft)
(cfs)
(cfs)
(ft)
(ft)
(ft)
F4
DI-313
12
0.43
0.67
0.29
4.0
1.14
1.14
0.015
0.040
0.020
0.083
3.38
0.19
100.0 %
1.14
0.00
6.5
1.86
1.86
5.00
0.23
100.0 %
1.86
0.00
F3
DI-313
10
0.63
0.60
0.38
4.0
1.51
1.51
0.015
0.025
0.020
0.083
5.62
0.24
100.0 %
1.51
0.00
6.5
2.45
2.45
7.42
0.28
100.0 %
2.45
0.00
F2
DI-7`
4x4
28.67
0.34
9.85
4.0
39.39
0.00
39.39
0.025
0.050
0.150
-
1.29
1
1.29
7.09
6.5
64.00
0.00
64.00
1.78
1
1.78
8.51
E9
DI-7'
4x4
10.75
0.47
5.05
4.0
20.19
20.19
0.025
0.100
0.120
-
0.82
1.5
0.55
8.87
6.5
32.80
32.80
1.14
1.5
0.76
11.49
E8A
DI-313
12
0.47
0.72
0.34
4.0
1.35
0.00
1.35
0.015
0.065
0.040
0.083
3.12
0.19
100.0 %
1.35
0.00
6.5
2.20
0.00
2.20
4.74
0.23
96.7 %
2.13
0.07
E8
DI-3C
14
0.92
0.59
0.54
4.0
2.16
0.00
2.16
0.015
0.065
0.020
0.083
4.68
0.22
100.0 %
2.16
0.00
6.5
3.51
0.00
3.51
6.39
0.25
92.4 %
3.24
0.27
E7C
36" ES-1
-
39.08
0.22
8.60
4.0
34.39
0.00
34.39
0.025
0.150
0.042
0.083
0.61
4
0.15
12.16
Note: Culvert
HW/D = 1.5 for Q=55.89. Inlet
is satisfactory.
6.5
55.89
55.89
0.85
4
0.21
14.58
E7A
DI-313
10
0.25
0.71
0.18
4.0
0.70
0.00
0.70
0.015
0.092
0.020
0.083
1.67
0.16
100.0 %
0.70
0.00
6.5
1.14
0.07
1.21
2.20
0.17
97.2 %
1.18
0.03
E7
DI-313
12
0.46
0.60
0.27
4.0
1.10
0.00
1.10
0.015
0.092
0.020
0.083
1.98
0.17
100.0 %
1.10
0.00
6.5
1.79
0.27
2.05
5.32
0.20
95.0 %
1.95
0.10
E6A
DI-3C
10
0.41
0.72
0.29
4.0
1.17
0.00
1.17
0.015
0.030
0.020
0.083
3.92
0.20
100.0 %
1.17
0.00
6.5
1.91
0.03
1.94
5.65
0.24
98.6 %
1.92
0.03
E6
DI-313
12
0.68
0.55
0.37
4.0
1.49
0.00
1.49
0.015
0.030
0.020
0.083
4.73
0.22
100.0 %
1.49
0.00
6.5
2.41
0.10
2.52
6.59
0.23
99.3 %
2.50
0.02
E5
DI-3C
10
1.27
0.59
0.74
4.0
2.97
0.00
2.97
0.015
0.012
0.020
0.083
0.21
0.5
0.42
4.11
6.5
4.82
0.02
4.84
0.29
0.5
0.58
8.11
E4
DI-313
8
0.15
0.78
0.11
4.0
0.46
0.00
0.46
0.015
0.022
0.020
0.083
1.86
0.16
100.0 %
0.46
0.00
6.5
0.74
0.02
0.76
3.01
0.19
100.0 %
0.76
0.00
E3
DI-3C
8
0.41
0.72
0.29
4.0
1.18
0.00
1.18
0.015
0.022
0.020
0.083
4.63
0.22
100.0 %
1.18
0.00
6.5
1.91
0.00
1.91
6.32
0.25
94.6 %
1.81
0.10
E2
DI-313
10
0.60
0.69
0.41
4.0
1.64
0.00
1.64
0.015
0.020
0.020
0.083
0.24
0.5
0.48
5.77
6.5
2.66
0.10
2.77
0.28
0.5
0.56
7.73
D3
DI-3C
8
1.19
0.51
0.61
4.0
2.44
0.00
2.44
0.015
0.010
0.020
0.083
0.30
0.5
0.60
8.63
6.5
3.97
0.00
3.97
0.34
0.5
0.69
10.82
D2
D1-313
12
0.52
0.54
0.28
4.0
1.11
1.11
0.015
0.020
0.020
0.083
2.62
0.18
100.0 %
1.11
0.00
6.5
1.80
1.80
4.20
0.21
100.0 %
1.80
0.00
C3
DI-3C
6
0.29
0.82
0.24
4.0
0.95
0.95
0.015
0.006
0.020
0.083
0.25
0.5
0.49
5.97
6.5
1.55
1.55
0.28
0.5
0.57
7.82
C2
DI-3C
6
0.14
0.85
0.12
4.0
0.47
0.00
0.47
0.015
0.020
0.020
0.083
0.21
0.5
0.42
3.96
6.5
0.77
0.00
0.77
0.24
0.5
0.48
5.66
`Assumes25% clogging
LD-229 Storm Drain Design Computations
Galaxie Farm
From
To
Catch.
Runoff
Increment
Accum.
Total
Total
Total
Up
Down
Pipe
Invert
Pipe
Pipe
Velocity
Flow time
Structure
Structure
Area
Coef
AC
AC
TOC
Intensity
Flow
Invert
Invert
Length
Slope
Diameter
Capacity
Increment
ac
min
in/hr
cfs
Elev.
Elev.
ft
%
in
cfs
ft/s
min
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
G2
G1
251.22
0.42
105.51
105.51
67.3
1.88
198.08
467.50
466.50
45.00
2.22%
(2) 48
146.4
11.6
F4
F3
0.43
0.67
0.29
0.29
5.00
6.81
1.95
480.00
479.00
149.64
0.67%
15
5.7
4.2
0.59
F3
F2
0.63
0.60
0.38
0.66
5.59
6.64
4.40
478.80
478.50
39.07
0.77%
15
6.1
5.4
0.12
F2
F1
28.67
0.34
9.85
10.51
23.50
3.83
40.21
478.30
476.00
114.73
2.00%
24
34.7
11.0
0.17
E9
E8
10.75
0.47
5.05
5.05
23.25
3.85
19.43
516.00
505.70
250.92
4.10%
18
23.0
14.6
0.29
E8A
E8
0.47
0.72
0.34
0.34
5.00
6.81
2.30
506.00
505.70
28.02
1.07%
15
7.3
5.2
0.09
E8
E7
0.92
0.59
0.54
5.92
23.53
3.82
22.65
505.50
492.00
161.72
8.35%
18
32.9
20.0
0.13
E7C
E713
39.08
0.22
8.60
8.60
29.02
3.38
29.09
486.00
485.90
5.00
2.00%
36
102.2
15.3
0.01
E713
E7A
0.00
0.00
0.00
8.60
29.03
3.38
29.09
485.70
484.70
86.98
1.15%
36
77.5
12.4
0.12
E7A
E7
0.25
0.71
0.18
8.77
29.03
3.38
29.68
484.50
484.20
27.52
1.09%
36
75.4
12.1
0.04
E7
E6
0.46
0.60
0.27
14.97
29.16
3.37
50.52
484.00
476.50
256.02
2.93%
36
123.7
19.3
0.22
E6Z
E6"
"10 yr Flow from HydroCAD model
35.72
476.00
475.20
16.12
4.96%
36
160.9
18.3
0.01
E6A
E6
0.41
0.72
0.29
0.29
5.00
6.81
2.00
477.70
477.00
30.08
2.33%
15
10.7
6.7
0.08
E6
E5
0.68
0.55
0.37
15.64
29.39
3.36
88.24
475.00
471.40
195.55
1.84%
36
98.0
13.9
0.23
E5
E4
1.27
0.59
0.74
16.38
29.62
3.34
90.46
471.20
470.60
59.92
1.00%
36
72.3
10.2
0.10
E4
E3
0.15
0.78
0.11
16.49
29.72
3.34
90.74
470.40
470.10
28.87
1.04%
36
73.7
10.4
0.05
E3
E2
0.41
0.72
0.29
16.79
29.76
3.33
91.66
469.90
469.00
74.82
1.20%
36
79.2
11.2
0.11
E2
E1
0.60
0.69
0.41
17.20
29.88
3.32
92.90
468.80
466.80
149.78
1.34%
36
83.6
11.8
0.21
D3
D2
1.19
0.51
0.61
0.61
5.00
6.81
4.16
469.00
468.20
61.01
1.31 %
15
8.0
6.6
0.15
D2
D1
0.52
0.60
0.31
0.92
5.15
6.77
6.22
468.00
465.00
76.40
3.93%
15
13.9
11.0
0.12
C3
C2
0.29
0.82
0.24
0.24
5.00
6.81
1.62
463.00
462.70
31.95
0.94%
15
6.8
4.5
0.12
C2
C1
0.14
0.85
0.12
0.36
5.12
6.78
2.41
462.50
462.00
8.04
6.22%
15
17.5
10.0
0.01
B2
131
338.08
0.43
144.02
144.02
67.6
1.87
269.63
462.70
460.50
64.00
3.44%
(2) 60
18.7
330.5
A2
Al
133.20
0.42
55.94
55.94
45.5
2.52
140.70
464.30
460.50
71.30
5.33%
(2) 48
19.0
226.3
DESICIN OF WTLET PROTECTIDN FROM A POUND PIPE FLOWING FULL
MINIMUM TAfLWATER CONDITION (Tw ---, 0.5 (DIAMETER)
�J,-!--
Outl et W Q Dg +2 min
L� I
Diameter, I30
OUTLET G1
Q10=192 CFS
(REGRESSION)
D50=14rx
La= 40'
DEPTH=21"
OUTLET E1
Q10=127 CFS
(RATIONAL)
D50=9"
La= 28'
DEPTH=14"
10
E,
- 1 ■p Ilr
i* aa�.. _
ai Sra . 4q ■
I
0--361 CFS i1milIl
i Ilvlllllllllll��l�■■■■�5�1�1 , ..ram+.dl�.a� � ��
�il¢�gIG+'4k�p1YVia
1��■1I����
Lief*munend-ed Min. 7 I.1I
I' •'!II
I
4
3
Ijll��'�t■�I�III���
���"_ , I ; I I_ I I I . I I I i i I I 1 1 0
to 0 50 10Q 200 500 1000
Di charge. ':O/sac ,
Independent Reports:
Excerpt from NRCS Soils Report
NOAA Precipitation Report
MAP LEGEND
Area of Interest (AOI)
Area of Interest (AOI)
Soils
Soil Rating Polygons
F] A
A/D
B
B/D
C
0 C/D
0 D
Not rated or not available
Soil Rating Lines
A A A
A/D
x, r B
,.�.r B/D
r C
C/D
D
r r Not rated or not available
Soil Rating Points
0 A
■ A/D
■ B
■ B/D
Hydrologic Soil Group —Albemarle County, Virginia
(Cow Branch Drainage Area)
MAP INFORMATION
p C
The soil surveys that comprise your AOI were mapped at
1:15,800.
0 C/D
® D
Warning: Soil Map may not be valid at this scale.
p Not rated or not available
Enlargement of maps beyond the scale of mapping can cause
misunderstanding of the detail of mapping and accuracy of soil
Water Features
line placement. The maps do not show the small areas of
Streams and Canals
contrasting soils that could have been shown at a more detailed
scale.
Transportation
§_§_+ Rails
Please rely on the bar scale on each map sheet for map
Interstate Highways
measurements.
US Routes
Source of Map: Natural Resources Conservation Service
Web Soil Survey URL:
Major Roads
Coordinate System: Web Mercator (EPSG:3857)
Local Roads
Maps from the Web Soil Survey are based on the Web Mercator
Background
projection, which preserves direction and shape but distorts
distance and area. A projection that preserves area, such as the
Aerial Photography
Albers equal-area conic projection, should be used if more
accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as
of the version date(s) listed below.
Soil Survey Area: Albemarle County, Virginia
Survey Area Data: Version 13, Sep 17, 2019
Soil map units are labeled (as space allows) for map scales
1:50,000 or larger.
Date(s) aerial images were photographed: May 20, 2019—Aug
1, 2019
The orthophoto or other base map on which the soil lines were
compiled and digitized probably differs from the background
imagery displayed on these maps. As a result, some minor
shifting of map unit boundaries may be evident.
USDA Natural Resources Web Soil Survey 5/5/2020
Conservation Service National Cooperative Soil Survey Page 2 of 5
Hydrologic Soil Group -Albemarle County, Virginia
Cow Branch Drainage Area
Hydrologic Soil Group
Map unit symbol
Map unit name
Rating
Acres in AOI
Percent of AOI
13C
Catoctin silt loam, 7 to
B
4.4
0.5%
15 percent slopes,
very stony
Catoctin silt loam, 25 to
B
8.0%
13E
66.0
45 percent slopes,
very stony
25B
Dyke silt loam, 2 to 7
B
11.4
1.4%
percent slopes
26C3
Dyke clay loam, 7 to 15
B
5.7
0.7%e
percent slopes,
severely eroded
39C
Hazel loam, 7 to 15
B
0.5
0.1%
percent slopes
40D
Hazel loam, 15 to 25
B
1.0
0.1 %
percent slopes, very
stony
58B
Myersville silt loam, 2 to
B
18.8
2.3%
7 percent slopes
58C
Myersville silt loam, 7 to
B
46.8
5.7%
15 percent slopes
58D
Myersville silt loam, 15
B
26.2
3.2%
to 25 percent slopes
59C
Myersville very stony silt
B
29.7
3.6%
loam, 7 to 15 percent
slopes
59D
Myersville very stony silt
B
34.7
4.2%
loam, 15 to 25 percent
slopes
59E
Myersville very stony silt
B
91.8
11.1 %
loam, 25 to 45 percent
slopes
63B
Orange silt loam, 2 to 7
C/D
11.8
1.4%
percent slopes
69
Pits, quarry
3.3
0.4%
71 B
Rabun clay loam, 2 to 7
B
66.8
8.1 %
percent slopes
71 C
Rabun clay loam, 7 to
B
35.2
4.3%
15 percent slopes
71 D
Rabun clay loam, 15 to
B
15.8
1.9%
25 percent slopes
72B3
Rabun clay, 2 to 7
B
9.7
1.2%
percent slopes,
severely eroded
usDA Natural Resources Web Soil Survey 5/5/2020
Conservation Service National Cooperative Soil Survey Page 3 of 5
Hydrologic Soil Group —Albemarle County, Virginia
Cow Branch Drainage Area
Map unit symbol
Map unit name
Rating
Acres in AOI
Percent of AOI
72C3
Rabun clay, 7 to 15
B
108.3
13.1 %
percent slopes,
severely eroded
72D3
Rabun clay, 15 to 25
B
78.4
9.5%
percent slopes,
severely eroded
20.0
72E3
Rabun clay, 25 to 45
B
2.4%
percent slopes,
severely eroded
73D
Rabun clay loam, 15 to
B
5.0
0.6%
25 percent slopes,
very stony
73E
Rabun clay loam, 25 to
B
58.8
7.1 %
45 percent slopes,
very stony
76
Dan River loam, 0 to 2
B
3.4
0.4%
percent slopes,
occasionally flooded
79B
Meadowville silt loam, 2
B
50.6
6.1%
to 7 percent slopes
88
Udorthents, loamy, 2 to
16.3
2.0%
25 percent slopes
90C
Unison very stony silt
B
7.5
0.9%
loam, 7 to 15 percent
slopes
Totals for Area of Interest
827.9
100.0%
usDA Natural Resources Web Soil Survey 5/5/2020
Conservation Service National Cooperative Soil Survey Page 4 of 5
Hydrologic Soil Group —Albemarle County, Virginia
Cow Branch Drainage Area
Description
Hydrologic soil groups are based on estimates of runoff potential. Soils are
assigned to one of four groups according to the rate of water infiltration when the
soils are not protected by vegetation, are thoroughly wet, and receive
precipitation from long -duration storms.
The soils in the United States are assigned to four groups (A, B, C, and D) and
three dual classes (A/D, B/D, and C/D). The groups are defined as follows:
Group A. Soils having a high infiltration rate (low runoff potential) when
thoroughly wet. These consist mainly of deep, well drained to excessively
drained sands or gravelly sands. These soils have a high rate of water
transmission.
Group B. Soils having a moderate infiltration rate when thoroughly wet. These
consist chiefly of moderately deep or deep, moderately well drained or well
drained soils that have moderately fine texture to moderately coarse texture.
These soils have a moderate rate of water transmission.
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist
chiefly of soils having a layer that impedes the downward movement of water or
soils of moderately fine texture or fine texture. These soils have a slow rate of
water transmission.
Group D. Soils having a very slow infiltration rate (high runoff potential) when
thoroughly wet. These consist chiefly of clays that have a high shrink -swell
potential, soils that have a high water table, soils that have a claypan or clay
layer at or near the surface, and soils that are shallow over nearly impervious
material. These soils have a very slow rate of water transmission.
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is
for drained areas and the second is for undrained areas. Only the soils that in
their natural condition are in group D are assigned to dual classes.
Rating Options
Aggregation Method: Dominant Condition
Component Percent Cutoff. None Specified
Tie -break Rule: Higher
USDA Natural Resources Web Soil Survey 5/5/2020
Conservation Service National Cooperative Soil Survey Page 5 of 5
Precipitation Frequency Data Server
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=37.9931 &...
NOAA Atlas 14, Volume 2, Version 3
Location name: Charlottesville, Virginia, USA'��''T
Latitude: 37.9931°, Longitude:-78.4956°
Elevation: 481.02 ft"
source: ESRI Maps wo
source: USGS
POINT PRECIPITATION FREQUENCY ESTIMATES
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley
NOAA, National Weather Service, Silver Spring, Maryland
PF tabular I PF-graphical I Maps_&_aerials
PF tabular
PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches)l
Average recurrence interval (years)
Duration
1
000�00
2 5 10
25
50
100
100 1
200
500 1000
0.352
0.620
0.674
0.723
0.770
0.825 0.870
0.418 0.489 0.551
5-min
(0.317-0.391)
(0.377-0.465) (0.440-0.543) (0.495-0.610)
(0.554-0.685)
(0.600-0.743)
(0.641-0.797)
(0.677-0.849)
(0.718-0.912) ((l751-0.964)
0.562
0.669 0.784 0.881
0.988
1.07
1.15
1.22
1.31 1.37
10-min
(0.506-0.625)
(0.603-0.743) (0.705-0.869) (0.791-0.976)
(0.884-1.09)
(0.956-1.18)
(1.02-1.27)
(1.07-1.35)
( 1.14-1.44) (1.18-1.52)
0.703
0.841 0.991 1.11
1.25
1.36
1.45
1.54
1. 44 1.72
15-min
(0.632-0.781)
(0.758-0.934) (0.892-1.10) (1.00 1.23)
(1.12-1.38) 11
(1.21-1.50)
1 (1.29-1.60)
1 (1.36-1.70)
1 (1.43-1.82) (1.48-1.91)
0.963
F 1.16 1.41 1.61
1.86
2.05
2.23
2.40
2.61 2.78
30-min
(0.867-1.07)
1 (1.05-1.29) 1 (1.27-1.56)
1 (1.66-2.05)
1 (1.82-2.26)
1 (1.97-2.45)
1 (2.11-2.64)
1 (2.28-2.89) (2.40-3.09)
1.20
1.46 1.81 2.10
2.47
2.77
3.07
3.36
3.75 4.06
60-min
(1.08-1.34)
1 (1.31-1.62) (1.63-2.00) 1 (1.89-2.33)
1 (2.21-2.73)
1 (2.47-3.06)
1 (2.71-3.38)
1 (2.96-3.71)
1 (3.27-4.14) 1 (3.51-4.51)
1.44
3.06
3.46
3.88
4.31
1.75 2.18 2.57
4.91 5.40
2-hr
(1.27-1.65) 11
(1.53-1.99) 1 (1.92-2.49) 11 (2.25-2.91)
1 (2.66-3.46)
1 (3.00-3.92)
1 (3.35-4.39)
1 (3.69-4.87)
1 (4.15-5.55) 1 (4.53-6.13)
1.58
1.91 2.38 2.80
3.34
3.79
4.25
4.72
5.37 5.93
3-hr
(1.38-1.82)
1 (1.67-2.19) 1 (2.08-2.74) 1 (2.44-3.21)
1 (2.89-3.81)
1 (3.27-4.32)
1 (3.64-4.84)
1 (4.02-5.39)
1 (4.51-6.14) 1 (4.93-6.77)
2.02
2.43 3.02 3.56
4.27
4.90
5.55
6.26
7.25 8.12
6-hr
(1.78-2.29)
(2.15-2.76) 1 (2.65-3.42) 11 (3.12-4.02)
(3.72-4.82)
1 (4.24-5.51)
(4.76-6.25)
(5.31-7.05)
(6.06-8.17)](6.70-9.16)
2.54
3.06 3.81 4.51
5.49
6.36
7.30
8.33
9.84 11.2
12-hr
(2.24-2.91)
1 (2.70-3.50) 1 (3.35-4.35) 1 (3.95-5.15)
1 (4.77-6.24)
1 (5.47-7.22)
1 (6.20-8.27)
1 (6.98-9.43)
1 (8.09-11.2) 1 (9.07-12.7)
3.04
3.67 4.70 5.55
6.83
7.92
9.13
10.5
12.5 14.2
24-hr
(2.73-3.41)
1 (3.30-4.12) 1 (4.21-5.27) 1 (4.96-6.21)
1 (6.06-7.60)
1 (6.98-8.80)
1 (7.97-10.1)
1 (9.04-11.6)
1 (10.6-13.8) 1 (11.9-15.7)
3.58
7.90
9.09
10.4
11.8
4.34 F 5.52 6-A9
13.8 15.5
2-day
(3.21-4.00)
(3.89-4.85) (4.94-6.16) (5.79-7.24)
(7.00-8.79)
(8.00-10.1)
(9.06-11.5)
(10.2-13.1)
(11.8-15.4) (13.1-17.3)
3.81
4.62 5.87 6.90
8.39
9.64
11.0
12.5
14.6 16.4
3-day
(3.46-4.22)
1 (4.19-5.11) 1 (5.32-6.49) 1 (6.23-7.62)
1 (7.53-9.26)
1 (8.60-10.6)
1 (9.74-12.1)
1 (11.0-13.8)
1 (12.7-16.2) 1 (14.1-18.2)
4.04
4.89 6.22 7.30
8.88
10.2
11.6
13.2
15.4 17.3
4-day
(3.71-4.44
1 (4.49-5.37) 1 (5.69-6.82) 11 (6.67-8.00)
(8.07-9.72)
(9.21-11.2)
(10.4-12.7)
(11.7-14.4)
(13.6-16.9) (15.1-19.1)
4.69
F 5.65 F 7.06 8.23
9.89
11.3
12.8
14.4
16.7 18.6
7-day
(4.32-5.11)
(5.20-6.15) (6.49-7.69) 1 (7.54-8.95)
(9.02-10.8)
(10.2-12.3)
(11.5-13.9)
(12.8-15.7)
(14.7-18.2) (16.2-20.4)
5.32
7 6.38 7.88 9.10
10.8
12.2
13.7
15.3
17.5 19.4
10-day
11
(4.92-5.74)
(5.91-6.90) (7.28-8.51) 1 (8.39-9.82)
1 (9.93-11.7)
(11.2-13.2)
1 (12.5-14.8)
1 (13.8-16.5)
1 (15.6-19.0) 1 (17.1-21.1)
F 13.3
16.2
17.7
6.98
F 8.33 10.1]
14.7
19.8 21.4
20-day
(6.55-7.47)
(7.81-8.91) (9.43-10.8) (10.712.2)
(12.4-14.2)
(13.7115.7)
(15.0-17.4)
(16.3-19.0)
(18.1-21.3) (19.4-23.1)
8.57
15.3
18.1
19.4
10.2 12.0 13.4
16.7
21.2 22.5
30-day
(8.07-9.12)
(9.57-10.8) (11.3-12.8) 1 (12.6-14.3)
(14.3-16.2)
(15.6-17.7)
(16.8-19.2)
1 (18.0-20.7)
(19.6-22.6) (20.7-24.1)
10.7
F 12.6 14.8 16.4
18.4
19.9
21.4
22.8
24.7 26.0
45-day
(10.1-11.3)
(11.9-13.4) (14.0-15.6) 11 (15.5-17.3)
(17.4-19.5)
(18.8-21.1)
(20.1-22.7)
1 (21.3-24.2)
(22.9-26.2) (24.1-27.7)J
12.6
F 14.8 r 17.1 18.8
21.0
22.6
24.1
25.5
27.4 28.7
60-day
(11.9-13.3)
1 (14.0-15.6) (16.2-18.0) (17.8-19.8)
(19.8-22.1)
(21.3-23.8)
(22.7-25.4)
(24.0-27.0)
(25.6-29.0) (26.8-30.5)
Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90 % confidence interval. The probability that precipitation frequency estimates (for
a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5 % . Estimates at upper bounds are not
checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
Please refer to NOAA Atlas 14 document for more information.
Back to Top
PF graphical
1 of 4 5/5/2020, 9:59 AM
Precipitation Frequency Data Server
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=37.9931 &...
30
25
c
-, 20
a
Oj
15
.2
10
PDS-based depth -duration -frequency (DDF) curves
Latitude: 37.99311, Longitude:-73.49561
5 = :..-
0
t L t L L rp n7 'p rp tp r{y rp rp rR
u9 C7 IYI O O ^ N N f�i 4 fa r5' €7' O iJ'9 C]
ei ri rn LO ri N rn � tD
Duration
30
25
r 20
4�
a
m
15
9
i1
10
CL
a
5
:��- —
1 2 5 10 25 50 100 200 500 1000
,average recurrence interval (years)
NOAA Atlas 14, Volume 2, Version 3 Created (GMT): Tue May 5 13:59:29 2020
Back to Top
Maps & aerials
Small scale terrain
Average r2currence
interval
(years)
— 1
2
5
— 10
25
50
100
200
500
1000
Duration
5-min —
2-day
— 10-min —
3-day
15-min —
4-day
— 30-min —
7-day
— 60-min —
10-day
— 2-hr —
20-day
— 3-hr —
30-day
— 6-hr —
45-day
— 12-hr —
60-day
— 24-hr
2of4
5/5/2020, 9:59 AM