Loading...
HomeMy WebLinkAboutWPO200500006 Calculations 2005-06-01 x , worowcpmat = Y - CRUTCHFIELD CORPORATION STORM WATER MAN AGEMENT ENGINEERING CALCULATIONS Counts, of Albemarle, I'irginia Prepared for The Crutchfield Corporation 1 Crutchfield Place Charlottesville , Virginia 22911 Prepared by saa The Cox Company 220 East High Street Charlottesville Virginia 22902 Januat' 17 20115 Rev, ed F ebruare 2 u5 Jun. I JhN3 Table of ^ontents 1 Table of Contents ********************** MASTER SUMMARY ********************** Watershed. Mod Rational Grand Summar 1 01 Master Network Summar 1 02 ********************** RAINFALL DATA *********************** Alb 1:0yr 100yr I-D-F Table 2 01 Alb l0yr 10yr I-P-F Table e 02 Alb 2yr 2yr I-D-F Table 2 u3 ********************** TC CALCULATIONS ********************* DEVELOPED TC Tc Calcs 3 01 *********************** HYG ADDITION *********************** OUTFALL 2yr Node Addition Summary 4 01 OUTFALL l0yr Node Addition Summar 4 11 OUTFALL 100yr Node Addition Summar 4 21 ********************** POND VOLUMES *********************** REV ON-SITE POND 'ol E1euu-Area 5 n1 Table of Contents u Table :f contents (continued) ******************* CUTLET STRUCTURES ********************* OUTLET Outlet Input Data 6 Cl *********************** POND ROUTING *********************** ON-SITE POND Pond E- -Q Table 2 U1 ON-SITE POND IN 2yr Node. Pond Inflow Summary 2 C2 ON-SITE POND IN 10yr Node Pond Inflow Summary 7 04 ON-SITE POND IN 100yr Node Pond Inflow Summary 7 06 ON-SITE POND OUT 2yr Pond Routing Summar/ 7 08 ON-SITE POND OUT l0yr Pond Routing Summar 7 09 ON-SITE POND OUT 100yr Pond Routing Summary 7 10 ****************** RATIONAL METHOD CALCS ******************* ASSUMED TREATED C and Area 8 01 DEVELOPED C and Area 8 n2 DEVELOPED 2''r Plod. Rational Graph 8 03 DEVELOPED 10yr Mod. Rational Graph 8 04 Table of Contents Table of Contents (continued) DEVELOPED IOm r Mod Rational Graph 8 05 ****************** ALBEMARLE BMP WORKSHEETS ******************* Drainage Atea 'A 9 ni Drainage Area 'B' 9 02 ************ STORMWATER EXTENDED DETENTION BASIN ************** Buoyanc' Calculation Sheet In 01 Orifii Drawdown Calculation Sheet 1U 02 *************** PLAN REVIEW OF FILTERRA BMP ******************* AMERICAST Appro 'al Letter 11 01 **************** STORM SEWER NETWORK SUMMARY ****************** Storm Sewer Summar Report 12 01 On-Site Ditch Calculations 12 02 Off-Site Storm Pipe Adequacy calculation 12 03 ************** STORM PIPE INLET CALCULATI?NS ****************** Storm Sewer Inlet Cal=ulatians 13 *l TTpe Mod Pat_onal Grand Summar, Page 1 n1 Name Watershed File U 2DLW0OLLETEU CRUT_HFIELD ,PONE CRUTCHFIELD PPW ************************************************************************ * * * * MODIFIED RATIONAL METHOD * * - -- Grand Summar For All Storm Frequencies ---- * * * * **************************************************************IV********* ******AM***********le*****le********************************************** Q = CIA * Units Conversion, Where Conversion = 43550 / (12 * 350u) Area = 20 200 acres Tc = 8 00 min VOLUMES Freq Adjusted Duration I Qpeak Allowable Inflow Storage years C min in 'hr cfs cfs ac-ft ac-ft 100 482 23 00 5 5405 54 35 52 68 1 722 597 10 482 18 00 4 5084 42 26 39 90 1 048 369 2 482 17 00 3 1992 31 38 28 85 735 238 TuTh Master Network Summar, Page _ C2 Name Watershed File D ' COLWOOLLEYBU'CRUTCHFIELD' POND' CRUTCHFIELD PPW MASTER DESIGN STORM SUMMAR] Default Network Design Storm File ID ALBEMARL IDQ IDE Storms 10 Rainfall Return Event Type IDF File IDF ID 100 -r I-D-F Table STORMS Alb 100yr 10 'r I D-F Table STORMS Alb 10-2 I-➢-F Table STORMS Alb 2 r MASTER NETWORK SUMMARY Modified Rational Method Network ('Node=Outfall +Node=Diversion, ) (Trun= HUG Truncation Blank=None L=Left R=Rt LR=Left&Rt) Max Return HYG Vol peak Qpeak Ma: WSEL Pond Storage Node ID Type Event ac-ft Trun min cfs ft ac-ft DEVELOPED AREA 100 1 722 8 00 54 35 DEVELOPED AREA 10 1 048 8 00 42 26 DEVELOPED AREA 2 735 8 00 31 58 ON-SITE POND IN POND 100 1 722 8 00 54 35 ON-SITE POND IN PONE 10 1 048 8 00 42 26 JN-SITE POND IN POND 2 '35 8 u0 31 38 ON-SITE POND JUT POND 100 1 515 23 00 53 '0 546 18 ON-SITE POND JUT POND 1n 902 19 00 .9 sl 546 44 0I4-SITE POND OUT POND 2 589 21 no 14 49 546 09 *OUTFALL JCT 100 1 575 23 00 53 10 *OUTFALL JCT 10 902 19 00 31 41 *OUTFALL JUT 2 589 21 00 14 49 T"ne I-D-F Table Page 2 i1 Name Alt 100—r Taa 10P' 'r Event 10a 'r File C FPJGRA-'_ HAESTAD' FPKW PAIIIFALL 9T?RM5 IDF Srsrm Alt auk. us Tag Inner Rainfall Intensit Duratihn Cure Time, min Intens in 'Far 4 98 9 5500 in 02 8 0000 15 00 6 8000 19 98 5 9000 25 02 5 3000 30 00 4 7500 34 98 4 3000 40 02 4 0000 45 00 3 7000 49 98 3 5500 55 02 3 3000 60 00 3 1000 T—pe I-D-F Table Page 2 (C Name Alb fu—r Tag 10yr Event 10 ,r File C PRXGRA- 1 HAE3TAD' PPEW FAIl]FALL,STORMS IDF Storm Alb 1Gyr Tag 10—3 Rainfall-Intemrt -Duration Curve Time min Intens in0hr _ _ __ _ _ 4 98 1000 10 02 5 6000 15 00 4 /n0n 19 98 4 0500 25 02 3 60on 3n On 2 20 0 34 98 2 900n 40 02 2 T000 45 00 2 5000 49 98 2 3500 55 02 2 2000 60 00 2 1000 T'pe I-L-F Table Page 1 1.2 Name Alb Ler Tag 2 ,r E^ent 2 'r File C PROJRA-1 HAESTAD PP[CA' RAINFALL STORMS IDF Storm Alb 1 _ Tag tea Rain£a11-Intenslt' -Duration Cure Time man Intens in 'hr 4 98 5 5000 10 02 4 2n00 15 00 3 4n00 19 98 2 900u 25 02 2 soon 30 00 2 2000 34 98 2 0000 4n 02 1 8000 45 00 1 7000 49 98 1 6000 55 02 1 50n0 60 00 1 4000 T 'pe Tc Ca_cs Page 3 01 Name DE"ELOPED T= File L SDFWOoLLEYEU CPUTCHFIELD ,POND\CRUTCHF'_ELD PPW TIME DE CONCE'TRATION CALCULATOR Segment #1 Tc User Defined Description Overland Flow Segment #1 Time 8 n0 min Total Tc 8 00 min (See attached drainage flow path) Tyre Node Addition Summar Page Name OUTFALL Event _ •r file D COXWOOLLEYBU CRUTCHFIELD POND CRUTCHFIELD PPW Storm Alb t s Tag 2- r SUMMARY FOR HYDROGPAPH ADDITION at Node OUTFALL HYG Director' D ,COXWOOLLEYBU,CRUTCHFIELD ,POND' Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag OUTLET ON-SITE POND IN OUTLET 2"r INFLOWS TO OUTFALL - Uclume Peak Time Peak Flow HYG file HYG ID RIG tag ac-ft min cfs OUTLET 2yr 589 21 00 14 49 TOTAL FLOW INTC OUTFALL Volume Peak Time Pea Flow HYG file HYG ID HYG tag ac-ft min cfs OUTFALL 2yr 589 21 n0 14 49 T''pe Node Addit1cn Summar, Page 4 n2 Name OUTFALL Event v.- Fire D G C[WOULLEYEU' CRU'ICHFIELD' POIID CRUTCIIFIELD PPW Storm Alb 2 r Tag 2yr TOTAL NODE INFLOW HYG file = HYG ID = CUTFALL HiG Tag = 2^r Peak Discharge = 14 49 cfs Time to Peak = 21 00 min HYG Jolume = 589 ac-ft HYDROGRAPH ORDINATES lcfsl Time Output Time increment = 1 On min min Time on left represents time for first value in each rcw nO 00 00 02 04 06 5 r,0 08 09 11 12 13 10 00 14 15 16 16 19 15 00 18 18 98 5 18 8 17 20 00 12 17 14 49 14 17 12 32 9 60 25 00 A 12 6 92 5 90 5 03 4 29 30 00 3 66 3 12 2 66 2 27 1 95 35 00 1 65 1 41 1 20 1 02 8' 40 00 74 63 54 46 39 45 00 i 33 29 24 21 18 5r 00 18 18 18 18 18 55 OU 18 18 18 18 18 60 00 18 18 18 18 18 65 00 18 18 18 18 18 7n Cu 18 18 18 18 18 75 00 18 18 18 18 18 80 00 18 18 18 18 18 85 00 18 18 18 18 18 90 00 18 18 18 18 18 95 00 18 18 18 18 18 100 00 18 18 18 18 18 105 00 18 18 18 18 18 110 00 18 18 18 18 18 115 00 18 18 18 18 12 120 nu 18 18 18 18 18 125 00 18 18 18 18 18 130 00 18 18 18 18 18 135 On 18 18 18 18 18 140 0n 18 18 18 18 18 145 00 18 18 18 18 18 150 30 18 18 18 18 18 155 00 18 18 18 18 18 16n no 18 18 18 18 18 T pe Node Addition 3ummar' Page 4 11 Name OUTFALL Event 10 yr File D CCXWOOLLEYBU CRUTCHFIELD' POND CPUTCHFIELD PPIT Storm Alb 10yr Tag 1fl r SUtMMAR] sOR HYDFOGRAPH ADDITION at Node OUTFALL HYG Director, P CC:WOOLLEYBU`CRUTCHFIELD ,FOND Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag OUTLET ON-SITE POND IN OUTLET 10yr INFLOWS TO OUTFALL Tolume Peak Time Peas Flow HYG file HYG ID HYG tag ac-ft min cfs OUTLET 10yr 902 19 00 37 41 TOTAL FLOW INTO OUTFALL Jolume Peak Time Peak F1os HYG file HYG ID HYG tag ac-ft min cfs OUTFALL 10yr 902 19 00 37 41 T-pe Node Addition Summar Page 4 12 Name OUTFALL E 'ent 15 -I- File P 7211'9t JLLEYBU CRUTCHFIELD POND 2PUTCHFIELE PEW Storm Alb 1 1 r Tag 111 -r TOTAL NODE INFLOW HYG file = HYG ID = OUTFALL HYG Tag = l0yr Peak Discharge = 3' 41 cfs Time to Peak = 19 00 min HYG Tolume = 902 ac-ft HYDROGRAPH ORDINATES lots) Time Output Time increment = 1 00 min min Time on left represents time for first Talue In each row 00 00 01 03 06 09 5 00 09 11 12 13 15 1u 00 16 1' 17 18 3 2n 15 00 8 96 22 84 31 05 35 79 Z° 41 20 u0 36 11 33 13 29 1' 24 65 19 81 25 00 14 78 ° 65 7 84 6 69 5 '0 30 00 4 86 4 14 3 53 3 01 2 5' 35 00 2 19 1 87 1 59 1 36 1 16 40 00 99 84 72 61 52 45 00 44 38 32 28 23 50 00 20 18 18 18 18 55 00 18 18 18 18 18 60 00 18 18 18 18 18 65 00 18 18 18 18 18 70 00 18 18 18 18 18 75 110 18 18 18 18 18 811 20 18 18 18 18 18 85 00 18 18 18 18 18 90 n0 18 18 18 18 18 95 00 18 18 18 18 18 1 ,0 00 18 18 18 18 18 105 00 18 18 18 18 18 110 00 18 18 18 18 18 115 0n 18 18 18 18 18 120 00 18 18 18 18 18 125 00 18 18 18 18 18 130 00. 18 19 18 18 18 135 00 18 18 18 18 18 14u ui, 18 18 18 18 18 145 u0 18 18 18 18 18 152 fib 1 18 18 18 18 18 1`_5 fib 1 18 _8 18 18 18 162 CD I 18 18 18 19 18 T' pe Node Addition Summar Pa3e 4 21 Name OUTFALL Eent 1n0 .r File D COVWOOLLEYBU' CPUTCHFIELD POND CRUTCHFIELD PPW Storm Alb 100^r Tag lu', -r SUMMLR'i FOP HYDROGRAPH ADDITION at Node OUTFALL HYG Director, D COLWOOLLEYBO CRUTCHFIELD ,POND' Upstream Link IL Upstream Node ID HYG file HYG ID HYG tag OUTLET ON-SITE POND IN OUTLET 100'-r INFLOWS Tn OUTFALL volume Peak Time Peak Flow HYG file HYG ID HYG tag ac-ft min cfs OUTLET 100yr 1 575 23 00 53 7n TOTAL FLOW INTO OUTFALL Volume Peak Tame Peak Flow HYG file HYG ID HYG tag ac-ft inn cfs OUTFALL 100yr 1 575 23 On 53 7u T_1e Urae Adliti_n Summar Page 4 22 name UUTFALL E^ent ln'' jr File C COXWOOLLETHD CRUTCHFIELD POND CRUTCHFIELD PPW Storm Alb 10flr Tag 10':,^r TOTAL NODE INFLOW HYG file = HYG ID = OUTFA3L HYG Tag = 100 -r Peak Discharge = 53 70 cfs Time to Peak = 23 u0 min HYG molume = 1 575 ac-ft HYDROGRAPH ORDINATES nfsl Time Output Time increment = 1 00 min min Time on left represents time for first value in each row 00 00 01 03 06 08 5 00 10 12 13 15 16 10 nn 17 18 5 03 18 34 33 56 15 On 41 90 45 78 48 42 50 25 51 51 20 u0 52 39 52 99 53 41 53 70 52 85 25 00 5u 17 46 22 41 39 34 12 26 85 30 un 19 81 12 87 8 49 7 24 6 17 35 0n 5 26 4 49 3 83 3 26 2 78 40 00 2 30 2 02 1 72 1 49 1 25 45 On 1 07 91 78 66 56 50 Ou 48 41 35 30 25 55 00 22 18 18 18 18 60 00 18 18 18 18 18 65 00 18 18 18 18 18 70 0n 18 18 18 18 18 15 00 18 18 18 18 18 80 n0 18 18 18 18 18 95 00 18 18 18 18 18 90 00 18 18 18 18 18 95 On 18 18 18 18 18 100 nC 18 18 18 18 18 105 nu 18 18 18 18 18 110 u0 18 18 18 18 18 115 iHU 18 18 18 18 18 120 00 i 18 18 18 18 18 125 OU I 18 18 18 18 18 13n nu 18 18 18 18 18 135 0^ 18 18 18 18 18 140 0n 18 18 18 18 18 145 00 18 18 18 18 18 150 01 18 18 18 18 18 155 DO 18 18 18 18 18 160 ni i 18 18 18 18 19 T''pe lcl E1e-'-Area Page 5 01 Name PE' ON-SITE POND Fire D CO::wcr+LLE'iBU CRUTCHFIELD POND CRUTCHFIELL PPW Title shifted as+ flocs Pb E'-e' atian P1anlmeter Area Al+A2+sgr)A1*A21 ^plume Tolume Sum ift' sq in) sq ft) )sq ft ac-ft lac-fti 540 nO --- 2553 a On0 0n0 542 Ou s/90 9454 145 145 544 00 - - 5238 13484 206 351 545 50 6450 17501 21'1 552 546 n0 --- - 6939 20079 077 629 547 00 - - - 7735 22000 168 797 POND VOLUME EQUATIONS * Incremental volume computed b' the Conic Method for Reser,rorr ✓olumes volume = (1, 3) * (EL2-EL1) * (Areal + Area2 + sq rt )Areal*Area21 ) where EL1 EL2 = Lower and upper elevations of the increment Areal Area2 = Areas computed for EL1 EL2 respect]. 'el+' 'plume = Incremental volume between EL1 and EL2 T' pe Dutlet Input Data Page b 01 Name OUTLET File L CO:.WOOLLE'iBU',CRUTCHFIELD POND CRUTCHFIELD PPW REQUESTED POND WS ELE' ATIONS I41n. Ele, = 540 00 ft Increment = 50 ft Max Ele' = 547 00 ft k*****************+xa*****kk kk******k k******** OUTLET CONNECTI"IT1 ************kkkkk*********kk****kk*kk****k k*** - - Forward Flo'. On1, (Upstream to DnStream) <--- Re,,erse Flow Only (DnStream to Upstream) - -> Forward and Reverse Both Allowed Structure No Outfall El ft E2 ft Inlet Pb: IB 545 000 547 000 Culvert-Circular CV - > TW 540 000 547 000 Orifice-Circular ---> TW 540 000 547 000 Weir-Rectangular ---> TW 545 500 547 000 Welt-Rectangular ---> TW 545 500 547 000 Weir-Rectangular ---> TW 545 500 547 000 Weir-Rectangular ---> TW 545 500 547 000 TW SETUP DS Channel T 'pe Outlet Input Data Page _ Name OUTLET File D CiXWOOLLE;BU' CRUTCHFIELD FOND CRUTCHEIELL PPW OUTLET STRUCTURE IINPUT DATA Structure ID = IB Structure T''pe = Inlet Box # of Openings = I Inert Elev = 546 00 ft Orifice Area = 16 0000 sq ft Orifice Coeff = 600 Weir Length = 16 00 ft Weir Coeff = 3 000 K Submerged = 000 K Reverse = 1 000 Kb,Barrel = 000000 (per ft of full flow) Barrel Length = n0 ft Mannings n = 0000 :'pe Outlet Input Data Page 6 03 Name OUTLET File D COXWOOLLEYBU CPUTCHFIELD' POND CRUTCHFIELD PPW CUTLET STRUCTURE II]PUT DATA Structure ID = C Structure T'pe = Cul 'ert-Circular Nu Barrels = 1 Barrel Diameter = 1 5000 ft Upstream Invert = 540 00 ft Dnstieam In ert = 539 50 ft Norio Length = 50 00 ft Barrel Length = 50 00 ft Barrel Slope = 01000 ft ft OUTLET CONTROL DATA Mannings n = 0130 Ke = 5000 (forward entrance loss) Kb = 018213 (per ft of full flow) Kr = 5000 (reverse entrance loss) HW Convergence = 001 +/- ft INLET CONTROL DATA Equation form = 1 Inlet Control K = 0078 Inlet Control M = 2 0000 Inlet Control c = 02920 Inlet Control . = 740n T1 ratio (HW/Di = 1 131 T2 ratio (HW/D) = 1 202 Slope Factor = - 500 Use unsubmerged inlet control Form 1 equ. below T1 elev Use submerged inlet control Form 1 equ. above T2 elev In transition zone between unsubmerged and submerged Inlet control interpolate between flows at T1 & T2 At T1 Ele. = 541 "0 ft --- Flow = 9 56 cfs At T2 Ele' = 541 8n ft ---> Flow = 8 66 cfs T.pe Outlet Input Data Page 6 n4 Name OUTLET File D COKWOCLLETEU CRU'P']hFIELE POND ,CRUTCHFIELD PPW OUTLET STRUCTURE INPUT DATA Structure ID = Structure Type = Orifice-circular 4 of Openings = 12 Invert Elev = 540 00 ft Diameter = 0417 ft Orifice Coeff = enn Structure ID = Structure Type = Weir-Rectangular 4 of Openings = 1 Crest Elev = 545 50 ft Weir Length = 2 00 ft Weir Coeff = 3 3n000n Weir TW effects (Use adjustmenr equation( Structure ID Structure Type = Weir-Rectangular 4 of Openings = 1 Crest Ele = 545 50 ft Weir Length = 2 00 ft Weir Coeff = 3 300000 Weir TW effects Use adjustment equation' Structure ID = Structure Type = Weir-Rectangular 4 of Openings = 1 Crest Elei = 545 5u ft Weir Length = 2 u0 ft Weir Coeff = 3 3C5O110 Weir TW effects Use adjustment equation) T pe Outlet Input Data Page 6 105 Name OUTLET Fate D CU:WOOLLEYBU CRUTCHFIELD' POND CRUTCHFIELD PPW OUTLET STRUCTURE INPUT DATA Structure IC = Structure T''pe = Weir-Rectangular # of Dpenings = 1 Crest Elev = 545 50 ft Weir Length = 2 00 ft weir Coeff = 3 300000 Weir TW effects Use adnustment equation) Structure ID = TW Structure Type = TW SETUP DS Channel FREE OUTFALL CONDITIONS SPECIFIED CON^ERGENCE TOLERANCES Maximum Iterations= 30 Min. TW tolerance = 01 ft Max TW tolerance = 01 ft Min. HW tolerance = 01 ft Ma: HW tolerance = 01 ft Min. Q tolerance = 10 cfs Max Q tolerance = 10 cfs T—pe Pons E- r9 Table Page ' Of Name ON-SITE POND File D CB}.W3YLLEYBU CFUTCHFIELL ,POND _RUTCHFIELE PPW LEVEL POOL ROUTING DATA HTG Dir = D ,COXWOOLLEIBU' ORUTCHFIELD`,POND' Inflot HUG file = NONE STORED - ON-SITE POND IN 100yr Outfit- HYG file = NONE STORED - ON-SITE POND OUT 1flusr Pond Node Data = ON-SITE POND Pond Ynlume Data = Rev ON-SITE POND Pond Outlet Data = OUTLET No Infiltration INITIAL CONDITIONS Starting WS Elev = 540 u0 ft Starting iolume = Ou0 ac-ft Starting Outflow = 110 cfs Starting Infiltr = u0 cfs Starting Total Qout= 00 cfs Time Increment = 1 Ou min E1e'-ation Outflow Storage Area Infilt Q Total 25/t + I ft cfs ac-ft sq ft cfs cfs cfs 540 00 00 000 2553 u0 un 00 540 50 05 031 2839 00 05 44 9' 541 00 08 065 3141 00 08 94 81 541 5n 10 103 3458 00 10 149 80 542 00 11 145 3790 00 11 21n 19 542 50 12. 190 4130 00 12 276 18 543 nC 14 240 4485 10 14 347 97 543 50 15 293 4854 00 15 425 18 544 no 16 351 5238 D0 16 509 87 544 50 17 413 5628 00 1' 600 41 545 00 18 480 6032 00 18 69' 5' 545 59 18 552 6450 00 18 811 5' 546 nC 9 06 629 6939 Or 9 06 922 00 546 50 40 93 711 7332 00 411 43 107J 78 54' 00 63 81 797 7735 n0 63 81 1221 19 Tope Node Pond Inf1o. Summar Page ' D2 Name ON-SITE POND IN Extent 2 'r FI_e D SO%WOOLLEYBU CEUTCHFI_ELD',PnrD :RUTCHFIELD PPra Storm Alb 2 r Tag 2 '1 SUI4t4AR] FOR H'YDP^GRAPH ADDITION at Node iN-SITE POND IN HYG Director D C_„WuOLLE;BU' CRUTCHFIELD POND Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag ADD DEVELOPED DEVELOPED 2''r INFLOWS TO ON-SITE POND IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag ac-ft min cfs DEVELOPED 2yr 735 8 OC 31 38 TCTAL FLOW INTO ON-SITE POND IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag ac-ft min cfs ON-SITE POND IN 2yr 735 8 nO 31 38 T'pe Node Pond Inflow Eammar Page 1 03 Name ON-SITE POND IN Event J jr File D COXWOCIFEYEU GFOTCHFIELE PONE CROTCHFIELD PFW Storm Alb 2^r Tag 2 'r TOTAL NODE INFLOW N G file = HIM ID = ON-SITE POND IN RIG Tag = 2yr Peak Discharge = 31 38 cfs Time to Peak = 8 00 min HIM "plume = 735 ac-ft HYDROGRAPH ORDINATES Icfs, Time Output Time increment = 1 00 min min Time on left represents time for first •afue in each ro' 00 00 3 92 7 85 11 77 15 10 5 00 1 19 62 23 54 29 49 31 38 31 38 10 63 1 31 38 31 38 31 38 31 38 31 38 15 O1 1 31 38 31 38 31 38 29 46 23 53 20 00 1 19 61 15 69 11 96 ' 84 3 92 25 00 1 on T.•ne Node Pond Inflo; Summar' Pa3e n4 Name ON-SITE POND IN Eient 14 'r ^_le D 'OXWOOLLEYEU CRUTCHFIELD POND CPUT4HFIELD PPW Stcr,n Alb 10^r Tag 1'a^r SU[4I4AEY FOP HIDROGPAPH ADDITION at Node ON-SITE POND IN HYG Direct sr D COXWOOLLEYEUA CRUTCHFIELD POND Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag ADD DEVELOPED DEVELOPED 10'-r INFLOWS TO ON-SITE POND IN Tolume Peak Time Peak Flow HYG fIle HYG ID NYC tag ac-ft min ofs DE^ELOPED l0yr 1 048 8 00 42 24 TOTAL FLOW INTO ON-SITE POND IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag ac-ft min :Es ON-SITE POND IN 10''r 1 048 8 n0 42 24 T''pe Node Pond Inflow Summar Page ' H Name JN-SITE POND IN E^ent lu yr File D ‘COPWOOLLEYEU' CPUTCHFIELD' POND CRUTCHFIELD PPW Storm Alb 1n^r Tag 1 'yr TOTAL NODE INFLOW HYG tile = HYG ID = ON-SITE POND IN HYG Tag = 10eer Peak Discharge = 42 26 cfs Time tz Peak = 8 8I min WIG volume = 1 n48 ac-ft HYDROGRAPH ORDINATES (cfsl Time Output Time increment = 1 00 min min Time on left represents time for first value in each row 00 00 5 28 10 57 15 85 21 14 5 00 26 42 31 71 36 99 42 26 42 26 10 00 42 26 42 26 42 26 42 26 42 26 15 00 42 26 42 26 42 26 42 26 36 98 2n 0n 31 69 26 41 21 13 15 84 10 56 25 n0 5 27 00 T^pe Node Pond Tnflnw Summar Page ° u• Name ON-SITE POND IN E^ent In -r File D OO:.WOCLLE'YEU :RrTCHFIELD POND CRUT=HFIELD PPW Stcrm. Alb 1nOyr Tag 1JL 'r SUMMARI FOR HYDROGRAPH ADDITION at Node ON-SITE POND IN HYG Director D COXWOOLLEYBU CRUTCHFIELD' POND Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag ADD DEVELOPED DEVELOPED 100yr INFLOWS TO ON-SITE POND IN - Volume Peak Time Peak Flow HYG file HYG ID HYG tag ac-ft min cfs DEVELOPED 100yr 1 722 8 00 54 35 TOTAL FLOW INTO ON-SITE POND IN Volume Peak Time Peak Flcw HYG file HYG ID HYG tag ac-ft min cfs ON-SITE POND IN 10u• r 1 722 8 00 54 35 T' pe Node Pond Inflow Summar Page ' 07 Name ON-SITE POND IN Event 1W Jr File D C['7WOOLLEYPD _RUTCHFIELD POND CRUTCHFIEOD PEW Storm Alb :u0—r Tag iu'"'r TCTAL NODE INFLOW HYG file = HYG ID = ON-SITE POND IN RIG Tag = 100—r Peak Discharge = 54 :5 cfs Time to Peak = 8 n0 min HYG fclume = 1 722 ac-ft HYDROGRAPH ORDINATES (cfs) Time Output Time increment = 1 00 min min Time on left represents time for first value in each row 00 00 6 80 13 59 20 39 27 19 5 0U 33 98 40 ' 7 47 59 54 35 54 35 10 00 54 35 54 35 54 35 54 35 54 35 15 00 54 35 54 35 54 35 54 35 54 35 20 00 54 35 54 35 54 35 54 35 47 55 25 00 40 96 33 96 27 17 20 3/ 13 58 30 Ou 6 '8 00 'pe F_nd Routing Summai Page 7 08 Name ON-SITE POND JUT Tag 2 'r E,'ent /r File D COXWOOLLEYHU CRUTCHFIELD POND CRUTCHFIELD PPW Storm Alb 2' r Tag 2 'r LEVEL POOL ROUTING SUMMAR'. HYG Dar = D COXWOOLLEYBU' CRUTCHFIELD' POND' Inflow HYG file = NONE STORED - ON-SITE POND IN 2yr Outflow NYC' file = NONE STORED - ON-SITE POND OUT 2 r Pond Node Data = ON-SITE POND Pond /olume Data = Re- ON-SITE POND Pond Outlet Data = OUTLET Nu Infiltration INITIAL CONDITIONS Starting WS Ele' = 540 n0 ft Starting Volume = Dn0 ac-ft Starting Outflo‘ = u0 cfs Starting Intiltr = n0 cfs Starting Total Qout= On cfs Time Increment - 1 00 min INFLOW/OUTFLOW HYDROGRAPH SUMMARY Peak Inflow = 31 38 cfs at 8 00 min Peak Outflow = 14 49 cfs at 21 u0 min Peak Elevation = 546 09 ft Peak Storage = 642 ac-ft MASS BALANCE (ac-ft) + Initial 'ol = 000 + HYG 'ol IN = 735 - Infiltration = 000 HYG 'ol OUT = 589 - Retained rol = 14G Unrouted of = - uoO ac-ft I u06% of Infloi 'plume) T pe Pond Routing Summar Page v n9 Name ON-SITE POND OUT Tag 10yr E-rent 10 yr File L COYWOOLLEYBU` CRUTCHFIELD PClC _RUTCHFIELD PPW St_rm Alt 1C 'r Tag l:^ _ LEVEL POOL ROUTING SUMMAR'. HYG Lir = L COYWOOLLEYBU CRUTCHFIELD FOUL Inflow H'i3 file = NONE STORED - ON SITE POND IN _ .r Outflo‘ HYG file = NONE STORED - ON SITE POND OUT 1!''r Pond Node Data = ON-SITE POND Pond Vo_ume Data = Rev ON-SITE POND Pond Outlet Data = OUTLET Nn Infiltration INITIAL CONDITIONS Starting WS Elev = 540 00 ft Starting Volume = 000 ac-ft Starting Outflow = n0 cfs Starting Infiltr = 00 cfs Starting Total Qout= 00 cfs Time Increment = 1 00 min INFLOW 'CUTFLOW HYDROGRAPH SUMMAR'I Peak Inflow = 42 26 cfs at 8 00 min Peak Outflow = 37 41 cfs at 19 n0 min Peak Elevation = 546 44 ft Peak Storage = "01 ac-ft MASS BALANCE (ac-ft) + Initial Vol = 00n + HYG Vol IN = 1 048 - Infiltration = n00 - HYG Vol OUT = 902 - Retained +O1 = 146 Unrouted "ol = - 00u ac-ft i 006° of Inflow Volume) T^pe Pond Routing Summar Page - 10 Name ON-SITE POND OUT Tag 100er Event l0u •r File E r'DXWOOLLEYBU' CRUTCHFIELD POND CRUTCHFIELD PPW Storm Alb 1404r Tag 1Ju•'x LE—EL POOL ROUTING SUMMAR'. HYG Dir = D ‘COXWOOLLEYBU' CRUTCHFIELD' POND Inflsw HYG file = NONE STORE{ - ON-SITE POND IN 100y•r Outflow HYG file = NONE STORED - ON-SITE POND OUT lob '1' Pond Node Data = ON-SITE POND Pond Tn_ume Data = Ree ON-SITE POND Prod Outlet Data = OUTLET Nc Infi-tiatron INITIAL CONDITIONS Starting WS Ele6 = 540 00 ft Starting volume = 000 ac-ft Starting Out£lo' = 00 cfs Starting Infrltr = 00 cfs Starting Total Qout= 00 cfs Time Increment = 1 00 min INFLOW 'OUTFLOW HYDROGRAPH SUMMARY Peak Inflow = 54 35 cfs at 8 00 min Peak Outflow = 53 70 cfs at 23 00 min Peak Elevation = 546 78 ft Peak Storage = 758 ac-ft MASS BALANCE an-ft) + Initial Tel = O40 + HYG 'sl IN = 1 722 - Infiltration = Ono - HYG "c1 CUT = 1 575 - Retained "ol = 147 Unrnuted Jot = - Ono ac-ft ( n05°% of Inflow 4olumel T pe C and Area Page 6 n1 Name PSUPIED TREATED File D _O]:WOOLLEEBU` CPUTCHFIELD PONE CFUTCHFIELD PPW Title Based on the assumption that Lae site is treated downstream RATIONAL C COEFFICIENT DATA Based on the assumption that the site as treated downstream Area C & Area Soil 'Surface Description _ acres acres Overall 30n0 20 2u0 6 060 WEIGHTED C & TOTAL AREA ---> 3000 20 200 6 060 Type C and Area Page 5 0.: Name DE"ELOPEE File D CVYWOOLLEYBU CRUTCHFIELD ,POND CRUTCHFIELD PPW Title De RATIONAL C _COEFFICIENT DATA De' Area C Area Soil Surface Description C acres acres Offsite Pa 'ement 'Parking 90V0 530 472 Offsite Buildings 8500 120 102 Public Roads 91'00 380 342 Building Footprint 85n0 1 990 1 692 Parking,'Pavement 9000 3 170 2 853 Sidewalk 'Hardscape 9500 110 094 Pervious Land 3000 13 900 4 _10 WEIGHTED C F TOTAL AREA - > 4816 20 200 9 729 T—pe Mod Rational Graph Page 8 Os Name DE"ELOPED Tag Y 'r E-ent File D rro,WCOLLEYBU =RUTCHFIELD PD D ERUTOHFIELD PPU Storm Alt 2 'r Tag 2 'n MODIFIED RATIONAL METHOD ---- Graphical Summary for Maximum Pequired Storage ---- Method I Q = CiA * Units Conversion, Where Conversion = 43560 / (12 * 3600[ ********************************************************************** * RETURN FREQUENC'. 2 yr I Allowable Out£1o: 28 85 __ * * C Adjustment 1 000 Required Storage 238 ac-ft * Peak Inflow 31 38 cfs * HYG File 2 'r ********************************************************************** Q Td = 17 00 min Return Freq 2 'r ---- - Appro: Duration for Ma: Storage C adj factor 1 000 Tc= 8 00 min I = 4 7215 in,'hr Area = 20 200 acres Q = 46 32 cfs Weighted C = 482 Adjusted C = 482 Required Storage -- 238 ac-ft Td= 17 00 min I = 3 1992 in,'hr XX x x xt x x x x x x x x x Q = 31 28 cfs J 0 Q = 28 85 cfs :< o [Allow Dutflcvi 0 o NCT TO SCALE a 17 65 min T T^pe Mca Rational Ciaph Page 8 4 Name DE 'ELOPER Tag 10'•r Event 1,1 -r File D COLWnOLLEYBU' CRUTCHFIELD POND CRUTCHFIELD FEW Storm Alt 1IF 'r Tag 10 I MODIFIED RATIONAL METHOD ---- Graphical Summar for Maximum Required Storage --- Method I Q = CIA * Units Conversion Where Conversion = 4.)56f / (12 * 3500 *********+**********************+***++******************************+* * RETURN FREQUENCY 10 'r Allowable Outflow 37 90 cfs * * C' Adjustment 1 On0 Required Storage 369 ac-ft * Peak Inflow. 42 26 cfs * HYG File l0yr * ++++++++++++*++++***+*++++**+***********+***************************** Q Td = 18 n0 min Return Freq 10 yr Approx Duration for Max Storage C ad] factor 1 000 Tc= 8 00 min I = 6 2019 in/hr Area = 20 200 acres Q = 60 84 cfs Weighted C = 482 Adjusted C = 482 Required Storage -- 369 ac-ft Td= 18 00 min I = 4 3084 in/hr x x x x x x . x x x x .. x 2 = 42 26 cfs r. x. o Q = 37 90 cfs o x (Allow Outflow) 0 o NOT TO SCALE s. e c 0 18 83 min T Tpe Mod Rational Graph Page 9 05 Name DE"ELOPED Tag 100 r Event 100 yr File n COEWOOLLEYBU' RUTCHFIELP' POND CRUTCHFIELD PPW Storm Alb luO"r Tag 106—r MODIFIED RATIONAL METHOD ---- Graphical Summar} for Maximum Required Storage ---- Method I Q = CIA k Units Conversion, Where conversion = 43560 / (12 * 36001 ********************************************************************** * RETNR.N FREQUENC] ion yr Allowable Outflow 52 68 rfs * * C Adjustment 1 000 Required Storage 59s ac-ft * Peak InfiDw 54 35 cfs * HYG File 100vi ********************************************************************** 4 Td = 23 00 min Return Freq 100 ar Approx Duration for Max Storage / C ad] factor 1 000 Tc= 8 00 min I = 8 6218 in/hr Area = 20 200 acres Q = 84 58 cfs Weighted C = 482 Adjusted C = 482 Required Storage -- 59T ac-ft Td= 23 00 min I = 5 5405 In,hr x x x x Ix x x x x x x x x x Q = 54 3 5 cfs X 0 Q = 52 68 cfs ,Allow OutflowF 0 o NOT TO SCALE x 3 23 5 min T Short Version BMP Computations For Worksheets 2 -6 Albemarle County Water Protection Ordinance Modified Simple Method Ran Crutchfield Corp Site Plan Amendment Water Resources Area De, mpment Area Preparer Eric✓Voolley, PE Date 15-Fet-0' Project Drainage Area Designation Drainage Area A L storm pollutant e>port in pounds, L=[P(PI1Rv'12][C(A)L'2] Rv mean runoff coefficient, Rv=0 35+0 00911) Pt small storm correction factor,0 9 I percent imperviousness P annual precipitation, 43' in Albemarle A project area in acres in subject drainage area, A= 089 C pollutant concentration. mg/I or ppm target phosphorus f factor applied to RR ✓ required treatment volume in cy,0 5"over impery area = Al1)4356010 5/12)/27 RR required removal L(post) f x L(pre) %RR removal efficieicy RR100/L(postj Impervious Cover Computation(values in feet&square feet) Item pre-development Area post-development Area Roads Length Width subtotal Length Width subtotal 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 O 0 0 0 0 0 Driveways Length Width no subtotal Length Width no subtotal and walks 0 0 0 0 265 5 1 1325 0 0 0 0 0 0 1 0 O 0 0 0 1 0 4718 Parking Lots 1 2 3 4 1 2 3 4 0 13706 0 0 0 13706 Gravel areas Area 0 Area 0 x070= 0 0x070= 0 Structures Area no subtotal Area no subtotal O 0 0 0 0 0 O 0 0 0 0 0 O 0 0 0 0 0 Actively-grazed pasture& Area Area yards and cultivated turf 0x008= 0 0x008= 0 Active crop land Area Area x025= 0 x025= 0 Other Impervious Areas 0 0 Impervious Cover 0°° 48°6 [pre) I(post) Rv(post) V 048 284 New Development(For Development Areas,existing impervious cover<=20%) C f I(pre)* Rv(pre) L(pre) L(post) RR %RR Area Type 0,70 1 00 20% 0 23 1 26 2 61 1 35 5250 Development Area 0.35 100 0% 005 014 131 117 90°o Dunking Water Watersheds 040 100 1% 006 018 149 121 88°° Other Rural Land min values Redevelopment(For Development Areas,existing impervious cover>20%) C f I(pre) Rv(pre) L(pre) L(post) RR %RR Area Type 0 70 090 20% u 23 1 26 2 61 1 48 57'° Development Area 0,35 085 0% O115 014 131 119 91% Drinking Water Watersheds 0,40 085 1% u 89 n 18 1 49 1 32 90`0 Dther Rural Land Interim Manual, Page 70 rev 16 Feb 1998 GEB Short Version BMP Computations For Worksheets 2 -6 Albemarle County Water Protection Ordinance Modified Simple Method Plan Crutchfield Corp Site Plan Amendment Water Resources Area De.eiopmerit area Preparer Eric Woolley, PE Date 15-Feh-n5 Project Drainage Area Designabon New Area B L storm pollutant export in pounds, L=(Pi Pj)Rv/12](C(A)2 72] Rv mean runoff coefficient, Rv=005+000911i Pj small storm uorrection factor,n 9 I percent imperviousness P annual precipitation,43 in Albemarle A project area in acres in subject drainage area, A= 10 57 C pollutant concentration mg/I or ppm target phosphorus f (actor applied to RR ✓ required treatment volume in cy, 0 5"over impery area= AI1)43560(0 5/121/27 RR required removal [(post) f x L(prel %RR removal efficiency RR100/L(post) Impervious Cover Computation(values in feet 8 square feet) Item pre-development Area post-development Area Roads Length Width subtotal Length Width subtotal 0 0 61888 0 0 61888 0 0 11263 0 0 79461 0 0 0 0 0 73151 0 141349 Driveways Length Width no subtotal Length Width no subtotal and walks 154 4 1 616 151 4 1 604 0 0 0 0 624 5 1 3120 0 616 245 40 1 980 4704 Parking Lots 1 2 3 4 1 2 3 4 4741 5016 9757 0 0 0 Gravel areas Area Area 12645 x070= 88515 x070= 0 Structures Area no subtotal Area no subtotal 86400 1 86400 86400 1 86400 0 0 0 0 0 0 0 0 0 86400 0 86400 Actively-grazed pasture& Area Area yards and cultivated turf 104960 x 0 08= 8396 8 90025 x 0 08= 7202 Active crop land Area Area x025= 0 x025= 0 Other Impervious Areas 0 0 Impervious Cover 41°° 52% I(pre) ((post) Rv(post) V 0 52 369 8 New Development(For Development Areas,existing impervious cover<=20%) C f I(pre)' Rv(pre) L(pre) L(post) RR %RR Area Type 070 1,00 20% 042 2699 3364 666 20% Development Area 0,35 100 0% 042 1349 1682 333 20% Drinking Water Watersheds 040 100 1% 042 1542 1922 380 20% Other Rural Land 'min values Redevelopment(For Development Areas,existing impervious cover>20%) C f I(pre) Rv(pre) L(pre) L(post) RR %RR Area Type 0 70 090 20% n 42 26 99 33 64 9 36 28"" Development Area 035 085 0% 042 1349 1682 535 32°° Drinking Water Watersheds 040 085 1% 042 1542 1922 612 32% Other Rural Land Interim Manual, Page 70 rev 16 Feb 1998 GEB Buoyancy Calculation Sheet Crutchfield Site Plan 4 mendment: Storm Hater Management Plan Fehruan 221 2005 Stormwater Management Outlet Control Structure (Northeast Basin) olunte of air in fully submerged structure = (4 ft x 4 ft x 60 ft) •.!name Onlii ur. CI(,Qg l = 96 ft' Volume of concrete in structure: \,= 5ftx5 ftx70 ft - 4ftx4 axon ft - 4x(3 ftx 05 ftx 05 ft) - 1(075ft1- x r, x 05 ft! - in) 25ftYxr, x 0.5 ft1 = 75.02 ft3 Lift required to displace concrete structure Liftreqd = P=BV' -F\.BV', =gV (P.-R,) = 32 2 ft's x 75.02 ft x (150 lb/ft- -62 lb/ft3) = 212 57' lb-fts1 \olume of air req d to displace concrete structure: V a teq di (212 577 lb-fts-) (32.2 ft's2 x 62 Ib'ft3) = 106.48 ft3 Since, \ rqd \a Concrete structure will not be displaced when submerged. Orifii Drawdown Calculation Sheet Crutchfield Site Plait Amendment:Stornnvater Management Plan February 21 2005 Stormwater Management Outlet Control Structure (Northeast Basin) Extended Detention Basin 2 times Water Quahth \olume Required Req d \ , = 318) cy = 9 990 ft' see Bb1P Computations sheet Head h = 5 5 ft see Plan For extended detention basins 2xN„q= 19 980 ft3 Discharge for 30 hr draw time (19 980 ft31(30 hr)(3600 see/hr)] = 0.185 cfs Orifice Area Req d a= Q/[C(2gh)1] a= 0.185/[0.6(2*32 2*5.5) 12] a= 0.0164 ft- Diameter Req d Assume 12 orifii a=0.0164ft2 ' 12 =0.0014 ft' d2 = (4x0.0014ft2) ' d= 0.042 ft = 0.5 in Therefore, the release requires 12 onfii ru' 0.5' for a 30 hour drawdown. I a ii In i Ern_ s\uollev PC g Project Engineer r The Cox Company y [terra 220 East High Street Charlonesv die. V q?wn_ �. ��K nit•. �m,.,�.,,,„� January S. 2005 Plan Review of Filterra? Crutchfield Warehouse Prolect, Albemarle County Dear Sirs 1 hank you for submitting the partial plans(file dated toda).)for our review of the Crutchfield Warehouse project. Fdterrax structures 2 3 and 4 were studied for Planned Filterra®box size • FilterraTt'contributing drainage area meeting project's regional sizing specification Spot elevations(TC)for Filterra®and bypass relief Filterra® invert elevations are 3 5. below T C The bypass is lower than the Filterra® elevation(spot elevations) The grading pattern encourages cross linear flow and not head-on flow • The Filterra® outlet drain pipe is sized correctly and exits perpendicular to the wall •For any conflicting structures such as storm drain pipes below Filterra® •For most efficient placement of Filterra®units 4-6. opening throat detail and standard notes on plans The pan rev iew concluded that the Ft terrar' structures listed above were sited and sized appropriately to treat stormwater to our published specifications Operational consistency with these specifications is contingent upon the stormwater units being installed correctly and according to the plans. as well as regular maintenance being performed. Installation Help documents will he forwarded to toe Buser at time of order The F !terra." Installation Operation anc Maintenance Manual will he forwarded to the Owner when the units arc acnv ated by 4mericast. Yours sincerely Edward hay Illterra Uperrtnnr slano_er • .rril.r_ti n,d h. e is Rudd I rS 4 "+d.rrnrr% MER! - __ _ • uimr Precast Rw.d F 19UL' _-nV•8 a,hl me v A tin• :tin Idr:rcr FEE-9-2000 TIED 17 7E TEL 47.4-EE7-7040 0011E 70. 7=0. I IPI HI Ii3HEE HE 711 F Page 12 01 User Name Administrator Date 06-01- Project Crutchfield Amen Time 15 37 1 Network 01 Southwest Page 1 Storm Sewers Summary Report Downstream Pipe Name Total Flow Pipe Dim HGL Down HGL Up Invert Down Invert Up Junction cfs in ft ft ft ft Outfall 5 Pipe 1 219 1800 58152 58182 58100 58130 MH 6 Pipe 2 1 45 18 00 581 75 586 85 581 50 586 60 MH 7 Pipe 3 0 94 18 00 587 56 588 43 586 80 588 00 User Name Administrator Date 06-01- Project Crutchfield Amen Time 15 39: Network 02- Northeast Page 1 Storm Sewers Summary Report Downstream Pipe Name Total Flow Pipe Dim HGL Down HGL Up Invert Down Invert Up Junction cfs in ft ft ft ft Outfall 1 Pipe 1 411 1800 583 64 583 64 583 00 584 00 MH 2 Pipe 2 1 77 18 00 584 95 588 50 584 20 588 00 MH 3 Pipe 3 084 1800 588 75 590 40 588 20 590 00 User Name Administrator Date 06-01- Project Crutchfield Amen Time 15 40 ' Network 03- Northwest Page 1 Storm Sewers Summary Report Downstream Pipe Name Total Flow Pipe Dim HGL Down HGL Up Invert Down Invert Up Junction cfs in ft ft ft ft Outfall 9 Pipe 1 7 34 24 00 582 15 583 65 581 50 583 00 MH 10 Pipe 2 7 05 24 00 584 18 584 74 583 20 583 80 MH 11 Pipe 3 1 91 24 00 585 56 585 55 584 00 584 50 MH 12 Pipe 4 1 58 24 00 585 72 585 84 584 70 585 40 MH 13 Pipe 5 1 42 18 00 585 92 587 12 585 60 586 80 MH 14 Pipe 6 0 79 18 00 587 41 588 89 587 00 588 50 MH 11 Pipe 7 4 75 18 00 585 39 586 24 584 00 585 40 MH 16 Pipe 8 110 1800 586 81 587 62 586 60 587 00 MH 16 Pipe 9 2 89 18 00 586 91 588 05 585 60 587 40 MH 18 Pipe 10 1 83 18 00 588 24 588 22 587 60 587 70 MH 19 Pipe 11 0 77 18 00 588 54 588 88 587 90 588 50 For 2-fir Rainfall Event — Outfall I From Virginia Erosion and Sediment Control Handbook From Table 5-14 From Plate 5-28 For 5°10 c slope' b = 5 its Hydraulic Radius (R) AiT= 4S Z = 4.5, d = 1 From Plate 5-30 I R) = 3254 Correction factor of 1 06 V x (R) = 1 72 diImank 5.3 ft/s From Plate 5-29 n forB = 107 a for C = 060 n for D = 048 From Haestad Methods FlonMaster version 3.43 ( Solve For Depth) Fur Manning's n 0 107 Lt Side Slope 450:1 (H•VI Velocity. 1.31 fps Rt Side Slope 4 50.1 (II:V) Flow Area 1.68 sf Manning's n. 0 107 Flow Top Width 5 49 ft Channel Slope 0.0444 ft/ft Wetted Perimeter 5.63 ft Depth 0 61 ft Critical Depth 0 43 ft Discharge 2.19 ets Critical Slope 0.2878ft Froude Number 0 42 For Manning's n = 0.060 Lt Side Slope. 4 501 1 (H'V) Velocity. 1.83 fps Rt Side Slope. 4 50)1 (H•V) Flow Area. 1.19 sf Manning's n 0 060 Flow Top Width. 4.64 ft Channel Slope 0 0444 ft/ft Wetted Perimeter 4.75 ft Depth 0 52 ft Critical Depth 0 43 ft Discharge 2 19 cfs Critical Slope 0 1162 ft/ft Froude Number. 0.64 For Manning's n = 0.048 Lt Side Slope 4 SO 1 (H V) Velocity. 2.30 fps Rt Side Slope 4 50-1 (11 V) Flow Area 0 92 sf Manning's n 0 048 Flow Top Width 4 07 ft Channel Slope 0 0444 ft/ft 1b etted Perimeter 4 17 ft Depth 0 45 ft Critical Depth 0 43 ft Discharge 2 19 cfs Critical Slope 0 05'9 ft/ft Froude Number 0 88 -Type D grass (I ESC Manual Table 5-13) is sufficient. Riprap with erosion control lining has been specified(see plans for details). For 10 yr Rainfall Event— Outfall 1 From V irginia Erosion and Sediment Control Handbook From Table 5-14 From Plate 5-28 For 59a ' slope. 1: = 5 ft's Hydraulic Radius (RI A:T=4,5 Z = 45, d = 1 From Plate 5-30 (R) = 3254 Correction Factor of 1 116 \' x (R) = I '72 .,w...ams= 5 3 it's From Plate 5-29 n for B = 107 n for C = 060 n for D = .048 From Haestad Methods FlowMaster version 3.43 ( Solve For Discharge) For Manning's n = 0 107 Lt Side Slope 4 50 1 (H.V) \velocity 1.81 fps Rt Side Slope 4 50.1 (FI.V I Flow Area 4.50 sf Manning's n. 0 107 Flow Top Width 9,00 ft Channel Slope 0.0444 ft/ft Wetted Perimeter 9 22 ft Depth 1 00 ft Critical Depth. 0 73 ft Discharge. 8.16 cfs Critical Slope 0 2415 ft Fronde Number. 0.45 For Manning's n= 0.060 Lt Side Slope 4 50 1 (H.V) Velocity 1 24 fps Rt Side Slope 4 50'1 (H V) Flow Area. 4 50 sf Manning's n 0 060 Flow Top Width 9 00 ft Channel Slope 0.0444 ft'ft Wetted Perimeter 9 22 ft Depth 1 00 ft Critical Depth 0 92 ft Discharge. 1.1.56 efc Critical Slope 0 U'03 ffift Froude Number. 0 SI For Manning's n = 11 (148 Lt Side Slope 4 50 1 (H VI 5 elocity 2 56 fps Rt Side Slope 4 50 I ill VI Flo»», Area 4 50 sf Manning s n. 11 048 F low Top Width 9 00 ft Channel Slope 0 0444 ft/ft Wetted Perimeter 9 22 ft Depth 1 00 ft Critical Depth 1 00 ft Discharge. 18.20 cfs Critical Slope 0 0432 ft/ft Fronde Number. 1 01 Q=2.93 < Qaim„amr e =8.16 < Qauo,ranra c— 14.56 < QauoK ante D = 18.20 -Type D grass (4 ESC Manual Table 5-13) is sufficient Riprap with erosion control lining has been specified (see plans for details). For 2-vr Rainfall Event — Outfall 5 to Stormwater Detention Pond From 'v irginia Erosion and Sediment Control Handbook From Table 5-14 From Plate 5-28 Fur 5 — 10°'o slope: \ =4 tl.s Hydraulic Radius IR) 4T = 3 Z= 3,2. d = 2 From Plate 5-30 (R) = .8321 Correction factor of 98 \ x (R) = 3 26 '4'ku ,able= 3.92 f/s From Plate 5-29 n for B = 074 for C = 045 n for D = .040 From Haestad Methods Flowl\taster version 3.43 ( Solve For Depth). For Manning's n = 0 074 Lt Side Slope 1 50 1 (H \ {'eloeity. 2.98 fps Rt Side Slope 1 50 1 (H Vl Flow Area 0 89 sf Manning's n 0 074 Flow Top Width 2 32 ft Channel Slope 0 1000 ft/ft Wetted Perimeter 2 '8 ft Depth 0 77 ft Critical Depth 0 '2 ft Discharge 2.66 cfs Critical Slope. 0.1433 ft/ft Froude Number 0 84 For Manning's n = 0 45 Lt Side Slope. 150 1 III \'5 Velocity. 4.32 fps Rt Side Slope 1.50.1 (H.\' Flow Area. 0.62 sf Manning's n 0 045 Flow Top Width. 1.92 ft Channel Slope () WOO ft/ft Wetted Perimeter 2.31 ft Depth. 0 64 ft Critical Depth 0.72 ft Discharge 2 66 cfs Critical Slope 0 0530 ft/ft Fronde Number 1 35 For Manning's n = 0 40 Lt Side Slope 1 50 I (H \ Velocity. 4.'2 fps Rt Side Slope 1 50 I (H \ i Flo Area 456 st Manning's n 0 040 Flow Top Width 1 84 ft Channel Slope 0.1000 Rift Wetted Perimeter 2 21 ft Depth 0.61 ft Critical Depth. 0 '2 ft Discharge 2 66 cfs Critical Slope 0 0419 ft/ft Fronde Number 1 50 Type B grass is sufficient for the design discharge rates. Grass to he planted with erosion control fabric to help stabilize the channel (see plans for details). For 10-vr Rainfall Event — Outfall 5 to Stormwater Detention Pond From \ irginia Erosion and Sediment Control Handbook From Table 5-14 From Plate 5-28 For 5 — 10°% slope: V = 4 ft's Hydraulic Radius (R) A'T = 3 Z = 3i2, d = 2 From Plate 5-30 (R) _ .8321 Correction factor of 98 \ x (R) = 3.26 �anc,„.,,ol. = 3.92 ft s From Plate 5-29 n tor B = .074 n for C = .045 n for D = 040 From Haestad Methods FlowMaster version 3.43 (Solve For Disehargel For Manning s n = (1.074 Lt Side Slope 1.501 (II VI \elocitv 562 fps Rt Side Slope 1.50 1 (H•VI Flow Area 6.00 sf Alannmg's n 0 074 Flow Top Width 6 00 ft Channel Slope 0 1000 ft/ft Wetted Perimeter 9 21 ft Depth 2 00 ft Critical Depth. 1 99 ft Discharge. 33.7l cfs Critital Slope. 0.1022 fvft Fronde Number 0.99 For Manning's n=0 045 Lt Side Slope 1 50 1 (HA/ I 'Velocity 924 fps Rt Side Slope 1.50 1 (H V I Flow Area. 6 00 sf Manning's n 0.045 Flow Top Width 6 00 ft Channel Slope 0 1000 ft/0 Wetted Perimeter 7 21 ft Depth 2 00 ft Critical Depth 2 43 ft Discharge. 55.43 eJs Critical Slope 110354 ft/ft Froude Number 1 63 Fur Manning's n = 0 040 Lt Side Slope 1 5(I 1 (II V, 1 Velocity 10 39 fps Rt Side Slope 1 50 I (H b I Flow Area. 6 00 st ALuuung's n 0 040 Flow Top Width 6 00 ft Channel Slope 0 1000 ft/ft Wetted Perimeter 7 21 ft Depth. 2 00 ft Critical Depth. 2 55 ft Discharge. 62.36 cfs Critical Slope 0 02'5 ft,ft Froude Number 1 83 Q=3.62 < Qa ow..m..s =33.71 < Qman able c= 55.43 < Qanaw acr:n = 62.36 Type B grass is sufficient for the design discharge rates. Grass to be planted with erosion control fabric to help stabilize the channel(see plans for details). Page 12.03 Downstream Off-Site Existing Storm Sewer Adequacy Calculation Summary .Solve For Depth in ptpc given peak flow from the proposed basin Existing conditions Pipe Length = 56 Im ert In= S37 45 Invert Out = s33.81 Pipe Size = 24' Downstream Pipe = 36 Out/Ines to an existing SOM basin For Manning's n = 0 013 Existing RCP Pipe Size= 24' Pipe Slope= 0.0648 ft'ft Known Flow = 37 41 efis 10-war peak outflow from control structure Flow Velocity= 18."2 ft/s Water Depth = 0.87ft Critical Depth — 1.82ft INLET NUMBER 2 LENGTH 60 STATION DRAINAGE AREA = 0 200 ACRES C \ ALUE = 900 CA = 0.180 SUM C A= 0 180 INT= 4.00 CFS= 0 720 CO= 0 000 GUTTER FLOW= 0 720 GUTTER SLOPE = 0.0400 FT'FT PAVEMENT CROSS SLOPE = 0 0208 FT'FT SPREAD AT A SLOPE OF 040 (ft 'ft ) IS 19' (ft XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft) = 9 60 H (ft) = 0 500 DEPTH OF WATER (ft) = 0.10 SPREAD (ft) = 4.90 INLET NUMBER 2 LENGTH 6.0 STATION DRAINAGE AREA= 0.200 ACRES C VALUE = 900 CA = 0.180 SUM CA= 0.180 INT= 6 50 CFS= 1170 CO= 0 000 GUTTER FLOW= 1 170 GUTTER SLOPE = 0 0400 FT,'FT PAVEMENT CROSS SLOPE = 0 0208 FT/FT SPREAD AT A SLOPE OF 040 (ft/ft ) IS 3 38 (ft ) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft) = 9 60 H (ft) = 0.500 DEPTH OF \\ATER(ft) = 014 SPREAD (ft) = 6.78 INLET NUMBER 7 LENGTH 6n STATION DRAINAGE AREA = 0 110 ACRES C -VALUE = 900 CA = 0.099 SUM CA= 0 099 INT= 4.00 CFS= (1 396 CO= 0.000 GUTTER FLOW= 0 396 GUTTER SLOPE _ 0 0300 FT'FT PAVEMENT CROSS SLOPE = 0 0208 FT'FT SPREAD AT A SLOPE OF 030 (ft 'ft.) IS 1.66 (ft ) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft) = 9 60 H (ft) = 0.500 DEPTH OF WATER (ft) = 0.07 SPREAD (ft) = 3.29 INLET NUMBER 7 LENGTH 6.0 STATION DRAINAGE AREA= 0 110 ACRES C V ALUE = 900 CA= 0 099 SUM CA= 0 099 INT= 6.50 CFS= 0 643 CO= 0.000 GUTTER FLOW= 0 643 GUTTER SLOPE =0.0300 FT/FT PAVEMENT CROSS SLOPE = 0 0208 FTFT SPREAD AT A SLOPE OF .030 (ft.'ft.) IS 2.00 (ft.) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft) = 9.60 H (ft) = 0.500 DEPTH OF WATER (ft) = 009 SPREAD (ft) = 4.55 INLET NUMBER 4 LENGTH 60 STATION DRAINAGE AREA = 0.270 ACRES C \ ALUE = 900 CA = 0.243 SUM CA= 0.243 INT= 4 00 CFS= 0 972 CO= U 000 GUTTER FLOW= 0.972 GUTTER SLOPE = 0.0100 FT'FT PAVEMENT CROSS SLOPE = U 11208 FTTT SPREAD AT A SLOPE OF .0I0 (ft.'ft.) IS 5 04 (ft XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft) = 9 60 H (ft) = 0 500 DEPTH OF WATER (ft) = 0.12 SPREAD (ft) = 5 99 INLET NUMBER 4 LENGTH 6.0 STATION DRAINAGE AREA = 0.270 ACRES C A ALUE = 900 CA = 0 243 SUM C A= 0.243 INT= 6.50 CFS= 1 579 CO= 0 000 GUTTER FLOW= 1 57Q GUTTER SLOPE = 0 0100 FT'FT PAVEMENT CROSS SLOPE = 0.0208 FT'FT SPREAD AT A SLOPE OF .010 (ft 'ft ) IS 6.74 (ft ) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft) = 9.60 H (ft) = 0.500 DEPTH OF WATER (ft) = 0.17 SPREAD (ft) = 8.28 INLET NUMBER 6 LENGTH 6.0 STATION DRAINAGE AREA = 0.470 ACRES C VALUE = 850 CA = 0 400 SUM CA= 0 400 INT= 4.00 CFS= 1598 CO= 0.000 GUTTER FLOW= 1.59S GUTTER SLOPE = 0 0180 FT'FT PAVEMENT CROSS SLOPE = 0.0208 FT'FT SPREAD AT A SLOPE OF .018 (ft 'ft ) IS 5 73 I ft.) XXXXXXXXXX COMBINATION GRATE CURB INLET IN A SUMP XXXXXXXXXX DEPTH OF WATER (ft) = 0.20 SPREAD (ft) = 9 57 PERIMETER OF GRATE = 6.00 (ft ) AREA = 1.90 (sq ft I LENGTH OF INLET = 6 0 (ft ) H = 0 500 (ft ) INLET NUMBER 6 LENGTH 6 0 STATION DRAINAGE AREA = 0.470 ACRES C VALUE = 850 CA= 0.400 SUM CA= 0.400 INT= 6.50 CFS= 2.597 CO= 0.000 GUTTER FLOW= 25977 GUTTER SLOPE = 0.0180 FT'FT PAVEMENT CROSS SLOPE = 0.0208 FT'FT SPREAD AT A SLOPE OF .018 (ft /ft ) IS 7 51 (ft XXXXXXXXXX COMBINATION GRATE CURB INLET IN A SUMP XXXXXXXXXX DEPTH OF WATER (ft) = 0.28 SPREAD (ft) = 13 22 PERIMETER OF GRATE = 6.00(ft I AREA = 1 90 (sq R) LENGTH OF INLET = 6.0 (ft.) H =0.500 (ft.) INLET NUMBER 1 LENGTH 6 u STA I ION DRAINAGE AREA = 0 170 ACRES C \ AWE 900 C A = 0 153 SUM CA= 0 153 INT= 4 00 CFS= 0 612 CO= 0.000 GUTTER FLOW= 0.612 GUTTER SLOPE = 0.0100 FT FT PAVEMENT CROSS SLOPE = 0 0208 FT'FT SPREAD AT A SLOPE OF .010 (ti.'ft ) IS 5 74 (ft ) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC. LENGTH (ft) = 6.00 H (ft) = 0.500 DEPTH OF WATER (ft) = 0 13 SPREAD (ft) = 6.02 INLET NUMBER 7 LENGTH 6 0 STATION DRAINAGE AREA = 0.170 ACRES C \ ALUE = 900 CA = 0.153 SUM CA= 0 153 INT= 6.50 CFS= 0.994 CO= 0.000 GUTTER FLOW= 0 994 GUTTER SLOPE = 0.0100 FT'FT PAVEMENT CROSS SLOPE = 0.0208 FT/FT SPREAD AT A SLOPE OF 010 (ft.'ft ) IS 6 88 (ft.) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft) = 6.00 H (ft) = 0.500 DEPTH OF WATER Itt) = 0 17 SPREAD (ft) = 8 32 INLET NUMBER 8 LENGTH O 0 STATION DRAINAGE AREA 0.130 ACRES C \ ALOE _ Q00 CA = 0 117 SUM CA- 0 117 INT= 4 00 CFS= 0 468 CO= 0 000 GUTTER FLOW= 0.468 GLITTER SLOPE = 0 0110 FT'FT PAVEMENT CROSS SLOPE = 0 0208 FT'FT SPREAD AT A SLOPE OF (Il 1 (ft.'ft ) IS 2.52 (ft.) XXXXXXXXXX CURB INLET IN A SIJMP XXXXXXXXXX P EFFEC LENGTH (ft) = 960 H (ft) = 0.500 DEPTH OF WATER (ft) = 0 08 SPREAD (ft) = 3 68 INLET NUMBER 8 LENGTH 6.0 STATION DRAINAGE AREA = 0.130 ACRES C VALUE = 900 CA = 0.117 SUM CA= 0 117 INT= 6 50 CFS= 0.760 CO= 0 000 GUTTER FLOW= 0 760 GLITTER SLOPE = 0 0110 FT'FT PAVEMENT CROSS SLOPE = 0.0208 FT'FT SPREAD AT A SLOPE OF .011 (ft Jf ) IS 407 (ft ) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft) = 9.60 H (ft) = 0.500 DEPTH OF WATER (ft) = 0 11 SPREAD (ft) = 5 08 INLET NUMBER 11 LENGTH 6.0 STATION DRAINAGE AREA = 0.100 ACRES C \ ALUE = 900 C A = 0 090 SUM CA= 0090 INT= 400 CFS- 0360 CO= 0000 GUTTER FLOW= 0360 GUTTER SLOPE = 0 0170 FT'FT P AVENIENT CROSS SLOPE = 0 0208 FT FT SPREAD AT A SLOPE OF 01' (ft 'fr ) IS 1 79 (It.) XXXXXXXXXX CURB INLET IN A SUNIP XXXXXXXXXX P EFFEC. LENGTH (ft) = 9.60 H (ft) = 0.500 DEPTH OF WATER (ft) = 0 06 SPREAD (ft) = 3.09 INLET NUMBER 11 LENGTH 6 0 STATION DRAINAGE AREA = 0.100 ACRES C VALUE = 900 CA= 0.090 SUM CA= 0 090 INT= 6 50 CFS= 0.585 CO= 0 000 GLITTER FLOW= 0 585 GUTTER SLOPE = 0 0170 FT'FT PAVEMENT CROSS SLOPE = 0.0208 FT'FT SPREAD AT A SLOPE OF 017 (ft./ft.) IS 2.54 (ft ) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft)= 9.60 H (ft) = 0 500 DEPTH OF WATER (ft) = 0.09 SPREAD (ft) = 4.27 INLET NUMBER 12 LENGTH 6 0 S"I ATION DRAINAGE AREA = 0.060 ACRES C \ ALOE = 900 CA = 0.054 SUM CA= 0.054 INT= 4 00 CFS= 0 216 CO= 0.000 GUTTER FLOW= 0 216 GUTTER SLOPE = 0.0250 FT'FT PAVEMENT CROSS SLOPE = 0 0208 FT/FT SPREAD W' W'T S\V SW/SX Eo a S'W SE 1 37 2 0 1 46 0.0831 4 0 1 00 3.5 0 146 0 167 XXXXXXXXXX CURB INLET ON A CONTINUOUS GRADE XXXXXXXXXX REQUIRED LENGTH (ft) = 3 8 EFFICIENCY= 1 00 CFS INTERCEPTED= 0 22 CFS CARRYOVER= 0 00 INLET NUMBER 12 LENGTH 6 0 STATION DRAINAGE AREA = 0 060 ACRES C VALUE = 900 CA= 0.054 SUM CA= 0.054 INT= 6.50 CFS= 0.351 CO= 0.000 GUTTER FLOW= 0.351 GUTTER SLOPE = 0 0250 FT/FT PAVEMENT CROSS SLOPE= 0.0208 FT/FT SPREAD W W/T SW SW,'SX Eo a S'W SE 1.65 2.0 1 22 0.0831 4.0 1 00 3.5 0.146 0.167 XXXXXXXXXX CURB INLET ON A CONTINUOUS GRADE XXXXXXXXXX REQUIRED LENGTH (ft) = 4 7 EFFICIENCY= 1.00 CFS INTERCEPTED= 035 CFS CARRYOVER= 0.00 INLET NUMBER 14 LENGTH 6 0 STATION DRAINAGE AREA = 0.110 ACRES C N ALUE = 850 CA = 0 094 SUM CA= 0 094 INT= 4 00 CFS= 0.374 CO= 0.000 GUTTER FLOW= 0 374 GUTTER SLOPE = 0 0200 FT FT PAVEMENT CROSS SLOPE = 0.020X FT'FT SPREAD AT A SLOPE OF .020 (It. iO IS 176 (ft ) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft) = 960 H (ft) = 0.500 DEPTH OF WATER (ft) = 0.07 SPREAD (ft) = 317 INLET NUMBER 14 LENGTH 6.0 STATION DRAINAGE AREA = 0 110 ACRES C N ALOE = 850 CA = 0 094 SUM CA= 0.094 INT= 6.50 CFS= 0.608 CO= 0 000 GUTTER FLOW= 0 6(18 GUTTER SLOPE = 0 0200 FT/FT P AVEN1ENT CROSS SLOPE = 0.0208 FIFE SPREAD AT A SLOPE OF .020 (ft ift.) IS 2.41 (ft.) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft) = 9 60 H (ft) = 0 500 DEPTH OF WATER (ft) = 0.09 SPREAD (ft) = 4 38 INLET NUMBER 15 LENGTH 6 0 STATION DRAINAGE AREA = 0.130 ACRES C AALUE = 850 C A = 0.111 SUM CA= 0 111 INT= 4.00 CFS= 0 442 CO= 0 000 GUTTER FLOW= 0.442 GUTTER SLOPE = 0.0200 FT'FT PAVEMENT CROSS SLOPE = 0.0208 FT'FT SPREAD AT A SLOPE OF 020 (ft 'ft ) IS 1.87 (ft ) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft) = 9.60 H (ft) = 0.500 DEPTH OF WATER(ft) = 0.07 SPREAD (ft) = 3 54 INLET NUMBER 15 LENGTH 6.0 STATION DRAINAGE AREA = 0.130 ACRES C VALUE = 850 CA = 0 1 I 1 SUM C A= 0 111 INT= 6.50 CFS= 0 718 CO= 0.000 GUTTER FLOW= 0.718 GUTTER SLOPE = 0.0200 FT'FT PAVEMENT CROSS SLOPE = 0 0208 FT;FT SPREAD AT A SLOPE OF .020 (ft 'ft ) IS 2.93 (ft.) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft) = 9.60 H (ft) = 0.500 DEPTH OF WATER (ft) = 0 1O SPREAD (ft) = 4 89 INLET NUMBER 16 LENGTH o 0 STATION DRAINAGE AREA = u 160 ACRES C N ALOE = 900 C A = 0 144 SUM CA= 0 144 INT= 4.00 CFS= 0.576 CO= 0.000 GUTTER FLOW= 0.576 GL ITER SLOPE = 0.0120 FT'FT PAVEMENT CROSS SLOPE = 0 0208 FT'FT SPREAD AT A SLOPE OF .012 (ft.'tt ) IS 3 04 (ft.) XXXXXXXXX COMBNATION GRATE CURB INLET IN A SUMP XXXXXXXX DEPTH OF WATER (ft) = 0 10 SPREAD (ft) = 4 85 PERIMETER OF GRATE = 6 00 (ft.) AREA = 190 (sy ft.) LENGTH OF INLET = 6.0 (ft ) H = 0 500 (ft.) INLET NUNIBER I6 LENGTH 60 STATION DRAINAGE AREA = 0 160 ACRES C N NI.UE = 900 CA = 0.144 SUM CA= 0.144 INT= 6 50 CFS= 0.916 CO= 0 000 GUTTER FLOW= 0.936 GUTTER SLOPE = 0.0120 FT,'FT PAVEMENT CROSS SLOPE = 0 0208 FT'FT SPREAD AT A SLOPE OF 012 (ft 'ft.) IS 4.61 (ft.) XXXXXXXXX COMBINATION GRATE CURB INLET N A SUMP XXXXXXXX DEPTH OF WATER (ft) = 0.14 SPREAD (ft) = 6 70 PERIMETER OF GRATE = 6.00 (ft.) AREA = 190 (al ft LENGTH OF INLET = 6 0 (ft ) 14 = 0.500 (ft.) INLET NUMBER 1' LENGTH 6 u STATION DRAINAGE AREA = 0.180 ACRES C VALUE = 900 CA= 0.162 SUM CA= 0 162 INT= 4.00 CFS= 0.648 CO= 0 000 GUTTER FLOW= O.648 GUTTER SLOPE = 0.0060 FT'FT PAVEMENT CROSS SLOPE = 0.0208 FT/FT SPREAD AT A SLOPE OF 006 (ft 'ft ) IS 4 54 (ft ) XXXXXXXX COMBINATION GRATE CURB INLET IN A SI IMP XXXXXXXXXX DEPTH OF WATER (8) = 0 11 SPREAD (ft) = 5 24 PERIMETER OF GRATE= 6.00 (ft.) AREA= l 90 (sq.ft.) LENGTH OF INLET = 6.0 (ft.) H = 0 500(ft INLET NUMBER 17 LENGTH 6.0 STATION DRAINAGE AREA = 0.180 ACRES C VALUE = 900 CA = 0 162 SUM CA= 0 162 INT= 6 50 CFS= 1.051 CO= 0.000 GUTTER FLOW= 1 053 GUTTER SLOPE = 0 0060 FT/FT PAVEMENT CROSS SLOPE = 0 0208 FT'FT SPREAD AT A SLOPE OF .006 (ft.'ft.) IS 6.20 (ft ) XXXXXXXX COMBINATION GRATE CURB INLET IN A SUMP XXXXXXXXXX DEPTH OF WATER (ft) = 0 15 SPREAD (ft) = 7.24 PERIMETER OF GRATE = 6.00 (ft ) AREA = 1.90 (sq.ft.) LENGTH OF INLET = 6 0 (ft.) H = 0.500 (ft.) INLET NUMBER IS LENGTH 60 STATION DRAINAGE AREA = 0.170 ACRES C \'ALUE = 900 CA = 0 153 SUNI CA= 0.153 INT= 4 00 CFS= U 612 CO= ii 00U GUTTER FLOW= U 612 GLITTER SLOPE = U 0180 FTFT PAVEMENT CROSS SLOPE = 0.0208 FT'FT SPREAD AT A SLOPE OF .018 (ft /ft ) IS 2 59 (ft.) XXXXXXXX COMBINATION GRATE CURB INLET IN A SUMP XXXXXXXX DEPTH OF WATER (ft) = 0 10 SPREAD (ft) = 5.05 PERIMETER OF GRATE = 6 00 (ft ) AREA = 1.90 (sq.ft.) LENGTH OF INLET = 6.0 (ft ) H = 0.500 (ft INLET NUMBER IS LENGTH 60 STATION DRAINAGE AREA = 0 170 ACRES C VALUE = 900 CA = 0 153 SUM CA= 0.153 MT= 6.50 CFS= 0 994 CO= 0.000 GUTTER FLOW= 0.994 GUTTER SLOPE = 0.0180 FT/FT PAVEMENT CROSS SLOPE = 0.0208 FT'FT SPREAD AT A SLOPE OF .018 (tuft ) I5 4.14 (ft.) XXXXXXXXXX COMBINATION GRATE CURB INLET IN A SUMP XXXXXXXXXX DEPTH OF WATER (ft) = 0 15 SPREAD (ft) = 6 97 PERIMETER OF GRATE = 6 (10 (ft.) AREA = 1 90 (sq ft ) LENGTH OF INLET = 6 0 (ft.) H = 0 500 (ft.) INLET NUMBER 19 LENGTH 6.0 STATION DRAINAGE AREA = 0.170 ACRES C 4 ALUE = 900 CA = 0.153 SUM CA= 0 153 INT= 4 00 CFS= 0.612 CO= 0 000 GUTTER FLOW= 0 612 GUTTER SLOPE = 0.0225 FT FT PAVEMENT CROSS SLOPE = 0.0208 FT'FT SPREAD Al' .A SLOPE OF 023 (ttltt.) IS 2 25 (ft ) XXXXXXXXX COMBINATION GRATE CURB INLET IN A SUMP XXXXXXXX DEPTH OF INATER(ft) = 0.10 SPREAD (ft) = 5.05 PERIMETER OF GRATE = 6 00 (ft ) AREA= 1 90 (sq ft.) LENGTH OF INLET = 6.0 (ft.) H = 0 500 (ft ) INLET NUMBER 19 LENGTH 60 STATION DRAINAGE AREA = 0.170 ACRES C b ALUE _ .900 CA = 0 153 SUM CA= 0.153 INT= 6 50 CFS= 0 994 CO= 0.000 GUTTER FLOW= 0.994 GLITTER SLOPE = 0.0225 FT'FT PAVEMENT CROSS SLOPE = 0 020$ FT'FT SPREAD 4T 4 SLOPE OF .023 (ft.'ft 1 IS 3 08 (ft.) XXXXXXXX COMBINATION GRATE CURB INLET IN A SUMP XXXXXXXXX DEPTH OF WATER (ft) = 0.15 SPREAD (ft) = 6 97 PERIMETER OF GRATE = 6.00 (ft ) AREA = 1 90 (sq ft.) LENGTH OF INLET = 6 0 (ft.) H = 0.500 (ft 1 INLET NUMBER 20 LENGTH 6 0 STATION DRAINAGE AREA = 0 120 ACRES C l ALUE = 900 CA = (I 108 SUM CA= 0.108 INT= 4.00 CFS= 0.432 CO= 0 000 GUTTER FLOW= 0 432 GUTTER SLOPE = 0.0100 FT'FT PAVEMENT CROSS SLOPE = 0.0208 FT'FT SPREAD AT A SLOPE OF 010 I ft.'ft I IS 2 42 (ft.) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC. LENGTH (ft) = Q.60 H (ft) = 0 500 DEPTH OF WATER (ft) = 0.07 SPREAD HI) = 4 49 INLET NUMBER 2O LENGTH 6.0 STATION DRAINAGE AREA = 0.120 ACRES C VALUE = .900 CA = 0 108 SUM CA= 0.108 INT= 6.50 CFS= 0.702 CO= 0 000 GUTTER FLOW= 0.702 GUTTER SLOPE = 0.0100 FT'FT PAVEMENT CROSS SLOPE = 0.0208 FT'FT SPREAD 4T A SLOPE OF .010 (ft /ft ) IS 3.97 (ft ) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC LENGTH (ft) = 9.60 H (ft) = 0.500 DEPTH OF WATER (ft) = 0 10 SPREAD (ft) = 4.82