Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
WPO201300034 Assessment - Environmental 2013-05-09
a a a Stormwater Analysis for l'reha1 ed by BELLARIVIINE !w. May 7,2U 13 ... a a a a a ..„ ._ tali Table of Contents AIN Hydrology Time of Concentration Peak Discharge aim Drainage Area Map am" Hydraulics Summary HEC-RAS Results Wish Culvert Design Ditch Design NRCS Soil Report a NOAA a a a a a a a Hydrology a TIME OF CONCENTRATION a Summary Compared two methods and used Watershed Lag as we believe the results better reflect the characteristics of prime rural land. Watershed Lag Method a 'cc= 108(S+1)07/ 1,140Yo.5 a where: Tc=time of concentration,h 1 =flow length,ft Y=average watershed land slope,% S =maximum potential retention,in = (1000/cn')- 10 where:cn'=the retardance factor The flow length for the hydraulically most distant flow path is 8,579 ft. Average watershed slope was found by inserting 7 lines from the downstream most part of the stream in the drainage area to various ends of the drainage divide,the approximate slope was found for each and an average was taken.Y was found to be 4.31% Base Elev Elev Rise Length Slope 482 594 112 2118.8 0.053 5.29 % 482 625 143 5368.5 0.027 2.66 % 482 660 178 6993.6 0.025 2.55 % a 482 636 154 5697.7 0.027 2.70 % 482 632 150 3228.1 0.046 4.65 % 482 628 146 6066.1 0.024 2.41 % a 482 572 90 907.6 0.099 9.92 % Average 0.043 4.31 % a a The retardance factor is approximately the same as the curve number(CN). The curve number was found based on the NRCS soil report for the area and the percentage of forested, meadow, and residential land use. The full NRCS soil report can be found in the Appendix. Based on the NRCS report it was found that the hydrologic soil groups present were 82.6% B and 17.4% C for the drainage area. The land use types were found using an aerial image of the drainage area and AutoCad. The CN for the land use type and the hydrologic soil group was taken from TR-55 Table 2- "' 2a, and a weighted average based on percent of hydrologic soil group and percentage of land use was taken and it was determined that the curve number is 61. Land Use Area(Ac) Land Use B C Weighted CN Wooded 278.1 = 36% Wooded 60 73 62 Residential 35.2 = 5% Residential 68 79 70 Meadow 450.9 = 59% Meadow 58 71 60 Weighted CN = 61 Based on the CN the maximum potential retention (S) was found to be 6.39 in. Therefore the time of concentration using the watershed lag method is 2.4 hours or 144.2 min. The lag time is 86.5 min. Tc= 144.20 min Lag= 86.52 min Velocity method The velocity method was used to find the time of concentration and was compared to that of the watershed lag method. The velocity method is a sum of the travel times for the hydraulically most distant flow path over the watershed through sheet flow, shallow concentrated flow, and open channel flow. Using the velocity method the time of concentration for this drainage area was found to be 67.76 min. A breakdown of how each travel time was determined follows. Type of Flow Tt Sheet Flow 28.81 min Shallow Concentrated Flow 6.95 min Open Channel Flow 32 min Total Flow Time: 67.76 min Sheet flow T t= (0.007(nl)o.9/ ((p2)o.sSo.4) a where: Tt=travel time,h n = Manning's roughness coefficient 1 =sheet flow length,ft P2= 2-year,24-hour rainfall,in S =slope of land surface,ft/ft S Manning's roughness coefficient was found using Table 15-1 from the National Engineering Handbook for woods with light underbrush,yielding a 0.40 n value. The sheet flow length is 300ft. The 2 year 24 hour rainfall was found from NOAA Atlas 14 (included in the Appendix) to be 3.66 in. The slope of the land surface was found to be .073 for the area of sheet flow. These values give a travel time of 28.81 min. Shallow Concentrated Flow T t=1/3600V, where: Tt=travel time,h 1=distance between the two points under consideration,ft V=average velocity of flow between the two points,ft/s 3,600=conversion factor,s to h The distance between the points under consideration is the distance of the shallow concentrated flow path found to be 459ft. The average velocity is found using Figure 15-4 from the National Engineering Handbook using the slope of the flow path which is .023 ft/ft. Using the slope with Figure 15-4,the velocity for the shallow concentrated flow was 1.1 ft/s. This yielded a travel time of 6.95 min for the shallow concentrated flow. a a a a a awe Figure 15-1 Veit Ally versus Qmmt shallolv«_central.How 1+ * __ _ ma r+ 4m AM mw R» kt 22 R± ` Am \ f Em - mM j m6 t m& ®® _ / © z Flo } £ - / Rw - ° / % / _ rq \ > , � �e �/��» 02 mE - ° f _ / / y «u ® m.n/ / / _ e = -. a z z a- \ - \ } { - 2 ylo (11/s) Open Channel Flow The trav el time through the op e channel is found us ing the Kirpich chart,requiring the va Wale of height ofmotr mote point above outlet and maximum len gth of the chan nel. The he%h of the most remote point of the main channel is 116ft above the outlet The length of the channel is 7,820f Using these values in the Kir ich chart the travel time for op e channel flow wa determined to be 32 min. a a a a 41111 1992 a TRAVEL TIME FOR CHANNEL FLOW (Kirpich Chart) or (feet) 500 Tc (min.) 200 a It, 100 ee 100 - L (feet) 10000 50 Fxaopte 7820 50 5000 32 4 L o a � L 4 4 F u I Note: •- o c o u (1) For use with natural charnels; C 0 (2) For paved charnels, multiply 10 ari 10 t T by 0.2 1000 � r= K 5 500 5 a 100 1 1 TIME OF CONCENTRATION OF SMALL DRAINAGE BASINS avr Source: VDOT Plate 5-3 V - 13 a a a PEAK DISCHARGE Summary Compared two methods and used the Regression Equation Method as the peak flows were slightly higher than TR-55,but comparable. Regression Equations The peak flow was found using the USGS regression equations, based on statistical data of the Southern Piedmont region of Virginia. The following are the equations for the 2, 10,25,50,and 100 year flood occurrences. 02=21.6A0.881E0.310L 0.423 010=38.8A°848E0.3291 0.430 Q25=54.8A0.852E0.392L 0.463 Q50 =74.3A0.860E0.390 -0.495 0100=101A0.869E0.382L0.529 mem A= drainage area (mi2) E = mean basin elevation (ft above sea level) L= main channel length (mi) For the drainage area the main channel length is 1.62 mi,the area is 1.194 mi2, and the mean basin elevation was found using a grid-sampling technique. A grid of 1000ft offsets was placed over the drainage area and elevations were determined at 34 intersections within the basin boundary. An average was taken of the elevations and the mean basin elevation was found to be 572ft above sea level. Using these values the regression equations yielded the following flood peak discharges. a Storm Flood Peak Discharge Q2= 147.2 cfs �.. Qlo= 406.0 cfs Qxs= 613.3 cfs Ow= 809.6 cfs (hoe- 1030.5 cfs a a a SCS Runoff Method The flood peak discharge was found using the SCS runoff method using HEC HMS. The time of concentration used for this method was that of the watershed lag method, 144.2 min,with a lag time of 86.5min. A type II 24 hour storm duration for 2, 10, 25, 50, and 100 year storms was specified. The point precipitation a frequency estimates were taken from NOAA Atlas 14 and are as follows. Storm Point Precipitation Frequency Estimates Q2= 3.66 In Qio= 5.52 In Q2s 6.77 In Qso= 7.85 In a Quo= 9.04 In a Using HEC HMS runs were made with each of the 2, 10, 25, 50,and 100 year storm meterologic models. The results are summarized as follows a Storm Flood Peak Discharge Q2 116.4 cfs Qio 352.4 cfs Q25 550.4 cfs Qso 736.8 cfs Qmo 953.8 cfs a a a a gar 0 V co v o U z� .O V oW N `\ m z Q ri(NW N *II 4- 0- c il co = a- � 0 6,s c3 �Y 2N co owl > > in LZI,...,4 .....5. -(15 cz- I- J J 2 x "" Z Q W u - �� Q o 0 a U_ • r / , If"' 4 i ,idi ,,,,. .. , 2 ,,,,.., ,, .., , ,,, 41: , ,.,„...iiiiikiot:A.L,T....,... A* ,,oti . , fi.. m#y fir`� c--- ,,, ..i ,,, -...„. de-- a n I .rta 4* -i,ti - t, o . *,.C....44....„ : r 47 1 rig=ar , 1.0 7 ate. !Le ,� _ v na � •r Q 4 V O f://... . , j r4‘ " -'--,, G• N \ ^Q 1. +"` as. .. .. jI r ' �'� i15 p 71 . it _ .,, . e. -- Ca (} m r MA j p to s W crl o; r O J i O U a .at Hydraulics a a Summary In order to place the driveway across the existing stream a culvert was designed to convey the 25 a year storm under the driveway. A 22'-1" by 6'-6" arch culvert was selected with a description of the hydraulics as follows. HEC RAS A HEC RAS model was set up of the stream crossing in order to model the designed culvert. Cross sections were set up using the surveyed contour data for the cross sections of the stream. The Manning's 'n'values for the channel were selected based on field observation of the area. A table of Manning's'n'values and the selected n values are included. a Table 3-1 Manning's'n'Values Type of Channel and Description tipriou Minimum Normal Maximum A. Natural Stream_ 1. Main Channels 3ar a.Clean.straight,full.no rifts or deep pools b.Same as above.but more stones and weeds 0.025 0.030 0.033 c.Clean_winding.some pools and shoals 0.030 0.035 0.040 0.033 •40 0.045 d.Same as above,but some weeds and stones 0.035 0.045 0 050 e.Same as above.lower stages.more ineffective slopes and 0.040 0.048 0055 r sections ru f Same as"d"but more stones g.Sluggish reaches.weeds deep pools 0.045 0.050 0.060 is Very weedy reaches.deep pools,or floodwaps with heavy stands 0.050 0.07 0 0.080 of timber and brush 0.0'0 0.100 0.150 nos 2. Flood Plains a. Pasture no brush 0.025 0.030 0.035 1. Short crass 2. High grass 0.030 0.035 0.050 rat b. Cultivated areas 0.020 0.030 0.040 1. No crop 0.025 0.035 0.045 2. Mature row crops 3. Mature field crops 0.030 0.040 0.050 e. Brush 1. Scattered brush_heavy weeds 0.035 0.050 0.070 Arm 2. Light brush and trees.in winter 0.035 0.050 0.060 3. Light brush and trees,in summer 0.040 0.060 0.080 4. Medium to dense brush,in winter 0.045 0.070 0.110 5. Medium to dense brush_in summer 0.070 0.100 0.160 d. Trees 0.030 0.040 0.050 1. Cleated land with tree stumps.no sprouts 0.050 0.060 0.080 2. Same as above.but heavy sprouts 3. Heavy stand of timber.few down trees.little 0.0$0 0.100 0.120 undergrowth.flow below branches 0.100 0-120 0.160 4. Same as above.but with flow into branches 5. Dense willows.stammer.straight 0.11Q 0.150 0.200 3 Mountain Streams.no vegetation in chauneL banks usually steep, with trees and brush on banks submerged a. Bottom:gravels.cobbles.and few boulders 0.030 0.0=0 0050 .�. b Bottom.cobbles with large boulders 0.040 0.050 0 070 a Once the cross sections upstream and downstream of the crossing were entered a culvert was inserted. The size of the culvert was increased until the 25 year storm event would not pass over the road. From the HEC RAS model it was determined that the 25 year storm produced a water •• surface elevation of 482.19 at the upstream cross section of the culvert. The road was then designed to have a low point of 482.5 to allow for freeboard. The cross sections with the 25 year storm water surface can be seen in the following figure. An output of the cross section and culvert — data also follows. Bellarming Driveway Plan:Plan 02 5+7/2013 au + 07 ►1..ca+ > Ago- laved EG 25 YR 4 — -- -----------_-_- i MN - --+-_____- WS25YR c __ CA 26 YR 1 482 a aa.n a 480- BBIYI 318 ri G9 . O 20 60 80 100 120 140 160 Stator i9) No Bellarmine Driveway Plan:Plan 02 572013 r .07 +.04+ .05 Myna no EG25YR WS25YR '� --- -- 6-111-5'A- i 482- • a Grai10 W • NM 493 Banta 438 � O 23 zC 5C BC 100 120 140 150 no Stator(n) Bellarmine Driveway Plan:Plan 02 57.2013 4 07 +4 .05 �/4 488 :- laved _r Ado --'` EG 25 YR �- 1--- WS25YR p. ft484 C M 2bYR w Bark SaH 490 ea • • a 0 20 47. 60 80 100 120 40 180 180 Stator fn? Bellarmina Driveway Plan:Plan 02 57/2013 .07 "°'I' .05 j .. �_ legend 496 EG 25 YR WE 25 YR — 6 *� _ Cn125 YR 1 482 - -------------- a w • Bark S4a 490- ms G8 . O 20 40 60 BO 100 120 710 160 1It0 Stator an a a a Plan: Plan 01 Stream Stream RS: 24 Profile: 25 YR E.G. Elev(ft) 483.8 Element Left OB Channel Right OB Vel Head (ft) 1.82 Wt. n-Val. 0.07 0.04 0.05 a W.S. Elev(ft) 481.98 Reach Len. (ft) 24 24 24 Crit W.S. (ft) 481.98 Flow Area (sq ft) 23.61 37.79 12.81 E.G. Slope (ft/ft) 0.017101 Area (sq ft) 23.61 37.79 12.81 'a° QTotal (cfs) 613.3 Flow(cfs) 78.05 460.85 74.39 Top Width (ft) 32.28 Top Width (ft) 17.24 9.5 5.54 Vel Total (ft/s) 8.26 Avg.Vel. (ft/s) 3.31 12.2 5.81 .. Max Chl Dpth (ft) 3.98 Hydr. Depth (ft) 1.37 3.98 2.31 Cony.Total (cfs) 4689.9 Cony. (cfs) 596.9 3524.1 568.9 Length Wtd. (ft) 24 Wetted Per. (ft) 18.17 9.5 7.01 a Min Ch El (ft) 478 Shear(lb/sq ft) 1.39 4.25 1.95 Alpha 1.72 Stream Power(lb/ft s) 142.3 0 0 a Frctn Loss (ft) Cum Volume (acre-ft) 0.11 C& E Loss (ft) Cum SA(acres) 0.02 0 0 d. Plan: Plan 01 Stream Stream RS: 0 Profile: 25 YR E.G. Elev(ft) 482.59 Element Left OB Channel Right OB Vel Head (ft) 0.64 Wt. n-Val. 0.07 0.04 0.05 a W.S. Elev(ft) 481.95 Reach Len. (ft) Crit W.S. (ft) 481.56 Flow Area (sq ft) 100.08 24.88 14.3 E.G. Slope (ft/ft) 0.010302 Area (sq ft) 100.08 24.88 14.3 a Q Total (cfs) 613.3 Flow(cfs) 311.93 234.42 66.95 Top Width (ft) 69.61 Top Width (ft) 57.37 6.3 5.94 Vel Total (ft/s) 4.4 Avg.Vel. (ft/s) 3.12 9.42 4.68 a Max Chl Dpth (ft) 3.95 Hydr. Depth (ft) 1.74 3.95 2.41 Cony.Total (cfs) 6042.4 Cony. (cfs) 3073.3 2309.5 659.6 Length Wtd. (ft) Wetted Per. (ft) 57.52 6.3 7.39 Min Ch El (ft) 478 Shear(lb/sq ft) 1.12 2.54 1.24 Alpha 2.13 Stream Power(lb/ft s) 163 0 0 a Frctn Loss (ft) Cum Volume (acre-ft) C& E Loss (ft) Cum SA(acres) a a a a a a a Plan: Plan 01 Stream Stream RS: 4 CuIv Group: Culvert#1 Profile: 25 YR Q Culv Group (cfs) 613.3 Culv Full Len (ft) # Barrels 1 CuIv Vel US(ft/s) 6.72 Q Barrel (cfs) 613.3 Culv Vel DS(ft/s) 7.11 E.G. US. (ft) 483.25 Culv Inv El Up (ft) 478 W.S. US. (ft) 481.98 Culv Inv El Dn (ft) 478 E.G. DS(ft) 482.59 Culv Frctn Ls(ft) 0.16 W.S. DS (ft) 481.95 CuIv Exit Loss (ft) 0.14 Delta EG (ft) 0.66 CuIv Entr Loss (ft) 0.35 Delta WS (ft) 0.03 Q Weir(cfs) E.G. IC(ft) 482.82 Weir Sta Lft (ft) E.G. OC(ft) 483.25 Weir Sta Rgt(ft) Culvert Control Outlet Weir Submerg Culv WS Inlet(ft) 482.19 Weir Max Depth (ft) Culv WS Outlet(ft) 481.95 Weir Avg Depth (ft) �.. Culv Nml Depth (ft) Weir Flow Area (sq ft) Culv Crt Depth (ft) 2.87 Min El Weir Flow(ft) 483.61 a a a a a a a a a a Culvert Design Three culverts were used in the design of the driveway. The drainage areas to each of these culverts can be seen in the following drainage map. The time of concentration for each drainage area was determined using the velocity method. The rational method was used to determine the 10 year peak flow. Using the VDOT Drainage Manual Appendix 8C-2, inlet control for circular corrugated metal, the high water for each culvert was determined. The culvert size and inverts were chosen to allow for at least 1 foot of freeboard to the road over the high water elevation at each culvert. A summary of the calculations for the 3 culverts is included. Ditch Design Section Lining Channel Channel Side Slope 2yr Velocity 10yr Depth Depth Width SCC-1 EC-2 1.5 6 2:1 4.3 .885 Matting SCC-2 EC-2 1.5 6 2:1 4.4 .87 Matting SCC-3 EC-2 1.5 6 2:1 3.34 .98 Matting a a a a a goo _ OU V ��• t r? 0 , �y Nw cz W co L .N Q -) cz a 2 c: I. OI p ao � w � -5 z Cg r� N O W ((`44 O w W x Z W \\\1 lLJ r` 1 0 . J 0 I \ .�\�� j�;�,'•�\•\��,��,'•\\'''(��,A �" In f',,.v �> , \ \,, ,. t II t t \.J x A\ v \A CZ i! , \\,'',. V �Na` \ ► V CO C � , •,� = � cx.) .c, N u v;511.- -e c, in - - - -- - - ' - - - - - - -- -- ,- , ,, __. „. ,.. / :1-§'---- -- ---"---ii---..--",.--.',./../..,/,1/.:////',//./.1%:.---"e>/:/,-/./ . ' ,./ ,I .,'''' -z- '\ 1. m L- I I p a t 1 '+,,, iii ii `a ■ CO t, it 1 Z1 CZ CZ CZ UD - o 0' ' . o 0 tn CZ 4-11- N j - w. &- II 00 o o u-) N it W J t_) 0 o Q N (1) +.rr.. �.rr.r ro.r..r. r.®r trw..r. r....�.. r.....r r�....... .......�r ..r.n.t� r...aro -a 7" 7" 7" 7" s 7" aD (D w CD D0 CD 3 O .fir O 0 ,* = o* o* o 7 3 7 3 co rCDD CD co rp rP rP O n r� cm CD o Iz n iz d) CD CD N NJ 3 3 7 00 00 00 O W W .7' W W rr 1_, rr F-e 0 0 = 0 0 = 03 W Co Ql O 01 O A O rep. 3 7 3 O O O :P A sot CA N t/1 0 0 0 CT 0• 0 1 0 0 73 1--, O . CD 0 CD N N CD 400 lilt 100 t�fl W 01 W sirs 73 73 "CI W N W NJ W NJ Ol in in Ol 01 CT Ow CD N (D O O 0 N Pf NJ n N n 0 (� `G lull `G 'G S DJ II 11 II 0) 11 II N II II 11 n it n II n C C C NJ SI m NJ LID N 00 NJ n W O N ( am bo N N en 3 A 63 N Ol 3 A ll7 OO 3. 3 of o W :p : W m w :A 5 N W �. al 7 f+ V O V l0 V V t0 t0 I--. 00 Isms n — II u �A II n A II n �. ... D v, rD D v+ D In m II 11 I II 1 I c. -<II II II S V O W 01 0 -P. I-e 0 0 W A N V A W to N a ? in i-e U7 Ul ul A t!I W A N Ut N A S 7' 3" ow.. N N F-. CO CO U7 n n n - K K v v v S. i• = 7 7 = _ n . _ _ 5 5 m O g q r p a p. m 0 g 4 o c o c — o c O -o O v 0 -a 1.. 3 3 7 � -P. 01 01 01 Mt l0 0 ,A 00 F+ In .A O A 0, O o 00 l0 10 O 1, N CT A A .P 00 Ul l0 N N 00 V co in t0 Ul Ol S 1 1 IN 0 0 0 ilii -o g x Iso z Ii °' 1 to OZ w l 1 k 0 0., o G. Z n_ NNN "���� __ �nn����M��������� � nmwamm 9 T OT =Ma—inn 8 n __an. n . . _ __ __n.N. MI_ IoM �����_��nnNM L SO of ■■nna ��nn.. 9 II- ■■N1��—�IH.■■ I1 o �-����1I1III■� i ii Ii II II sa -�_�11 I I■ of �A �� ��IP UPI NO o 11111 M b�AUS, sue' 'ISA� O 0 I ",iii y o °y aN S4 40 S OT c. SA, Ulo QU 60 cn ,a r T O J UO9.I .14.va A 8'0 L'0 Ta i J'?tl a.A 90 w A � cu 1 iii o 773 1 Jo 8'0 6 f_ ��. V = i (.1) ,1 1 , _il ', 1'0 N 10 I+ O O O O 0 0 O O O .O i O O O O O O 0 00 00 0- O ke 00 N O O O 0, 0 0 0 0 0 0 0 O O O O o es U ( )adoIS I i - ii r- ii ii ii i iiI. M i� 191191111:116.11: ■.u. ■■I■■ . .. ■.■u ■ "81"14111"$ . °� �. �, WM MO A :1.1111......:II 1:=uu..u.i.u.....■...... :::1::::::i1............. .. �, r • .......:I III■■..E ..■■................u••....■■■■■■.1I■■.■■...■..... u- • MA IS r ■ 1111 11111m1111OS1111111I■ .■ ■■■■■■■■■■...■■ ■■ .■■...■■,.10111 .rut■■ ■. ...■.■: ..■ ■ 1: ■..■ ■■ ...■.■..r�. .nr ■ I. I1■■■ 11. '1I■IC:I■.II11111 11■■.■■/.� .II 111.1.. ... ........ ...... ........ .. ...w �� _ I . If .....u.• a. ■■• ■11111■ ■■::::1:11::: : MME. 11.111■:I1 1M1::I■■:EUM■..■t1■..■ r■■/.■■t1...■ E l: :EI EE1:: .■■..r■.■r;.r,.■r,■.r,..■r■■.■. _� 1 1::::I::ommilimmo:..I ..I ::Emisom:■II1 1==�11:1::EE::::::slrili::l:::::'GIs... E:.■■111■I■■.I■ ■■■■.■..1..■■.■.■■■■ ■■■■.■.■■ ■■■.■■ ■ IMI ■..r.■.11111....■ ■■../■.■....■■■■ .■. . ■■■■.■■. ■..■ ..........■.■.......I■t•I■t ■. ■.■.,..r MMI ■III■ V ■_■■.■.■■■.■■.I.IIII.I■:■I.I....UI.1IiU= IIII■ ■.■■.■....■I■■■II■■II■.■■■■■■ ■ ■ II.■.■ ■■ .I.■.■■.A■I.1111■1■■..■■ ■ ■■■.■1111■■■■■ I■■ ■ ■■ ■11111/1■■/ ■. ■II'/.:r■.■■'1■...■■ 1111■■ ■■ ■■I■.■■■1■I..■ 111 1111■ ■.....11..1 4I■It AI1III./...■ ■ .r : II:11II■■:■I�i1 E...■■...1.11....111 ■■ 1.' �i.....,.....=E1=...r.............1. 111 1111.11111■■ C ■■1111111. 1■111■. . .........., . ■1111.,.■■.r■■■.■■■ .■■■•IUII1■■.■.■. . .. I■■11.11. 111 IIiiiili■.■.■■■■r.■ r.■..II■..I■.1.■1r,■.■■■.I ■........■I.■I■.IEE G1:■■I..■■■■■I.■1■■■ ■■■■..■r/•EUi11 $1:1r,1■r•■■■■A■■II■■■ ■■■■■III■■ ■1111111..1■■■■■■■■■.■ ■■1■■■ ■1.II■r4■ .1■■r,.■■■r.■....■■ b 1111111111111111111111111111111111111111 11:1: : 1111::::°I.s,Iu:r IEWA.0::ri::III w p 1111... 111111 ..■.. Immo 1111:•E•$�l ■I' .•r/1■r.s•U...■1.,1111..■ E 11• 0 1111...:1 ■.■■.■. ■1I■■ inum.olundlpara ■'IIIr/I..■r�■. IE E o ■.■■■■■■■ 1111■■ ■r�..r,1.■.t�■■U ■ ■111 ■.I■■I.■■■u.■.. ■I■ em. J■■IrnnaI.■ri ■tn.■■/I■■ • °r ........4. • I:i.1:::E■•■MINI:: .■■ E::::::::IE':':= =Elr:' ' : :::ii::::::: E :11■■■.■.I....■■ EEIEEEI■. 1:::::...u u....,iuE=/...•::eif ;i ::•IIVIUIUIRU... o ...■...111111... ... Al ■■■ ■■■ ■■1.■ ■■■■■■■■.■■..1...........■.■►•■ r• ■r. ■■r,..., M ME ■.■E■1.11...1 ■■.■■...■ ..■1t■■1■■..I..=r• E� 1 �� 11■/:::: :, 1..111.■ IE EIIU ■ IIII■II:r•iIEE J ! �E r•1■■J.■■■r .■. ■■■.■■.■ ■■■■■■..■■■■■ %I 11'I■11I/,■■NI•r/■■■■..1■■■II■ R■■■■ i 1.■ 1111■■E I•U•.U•I .■■.■■■■■11.. i •11111...■..... ! I EI.I.I■1'•..■■■...■.IEEE■■1II1g •I..I.I•• •..:MAUI.::IU 111.:/..iii.. 4 .Ir4I••IiiINSmiii::::■■I: : :Ii G ■ ■.■■■■ ■■ III. UE II : 1111 1111 1111■ ■■ ■■■ ■..■..I■.1. ■.I/.■■■►•■■■•. 1,•111►.■ 1.■ r..■1.■■.■■.1 ■■ Ilr A ................................EI ■.I■I■.■U.11.•:■■■:■■.I■.■■.■.■/r:�.■■.-r■■■.■■1■ r..UU.■■ l.■ ►,■U■..IU..■.■ ■■ . ■■■ ■r....■r:■.1r:■ ■.■■I•.■■...■Ili■■•,■■■■■■■■■■■■■■I■N1.N ■ ■ ■■I■■.I■II■■ I.....■ ._: UU.U! ■I•.■:■.I:/■ ■•/.■UI�■!...IUU■II..I■■I■■■.■ ■.11 1I■ ■111..1■ _! ■r: lily ■I!■■■:!■.UI■II..dUIII■■■.II.■I■1I■1U■ I.I...■.: i 1:U:Eu.:s1= aIEEEEI.:II■. ■..11..41■■I1.■■■III.■■.■■■■■ E: EEEEE i11lli li 0■■.:..1.1.1111111:4■I.!/.I1■Irnill..I■.■elii..■■■■...I rr I■U.I..■ ■.1■.I1:Eii ii 111 .�i1i=!:.Hill,I�:Iiip:m....r:iii:1111liiii i■....II.■..■ Y. wpm swim ■ .d . . /I. . lor.■ ■.■o!d■■.■ 1 ■ ■ ■■ ■.■ ■■I. ■I I ■■■■ra_.r.'0■�r—.I■■r-..=1..■= .r■01r.r■I:■■r...I...I11II■■111mi 111::■:.■:■I■ o 0 E EEEEEEEEEI!il,illI: a U ' ..l UU=1owndi....01•10 U :'l:a:UIUUUI:EIE �. rul•.•UuUUU•I UUUUU::_:_ NM A • 1! :0019'r..t•-=.■i■■■lI r■iv=�r=u...r-.riAIIMII:11111 1 ::::::::::111 >' $ r1 ■I IUIUU ■=nii:ii::::3:=::::::::::::=:::i'::::::::::=:::.1 � ............ i:1==11.111■ x • ■. .. ■■ ■U• ..■■1.1..1.1.■■■ ■■ ■■ ■.I..■.■■...■ mum = _ - ON 00 1` '0 U7 d' M N - (.iy/ui) A4isualul Ile4uiea N C') ii t-t , N N 00 i bi 6 I Liii L ,L, l iii l , 1 et CC mi M 1 I 1. I 1 t , ! !1 i_I I I 1 t 1 IX X la N1 . l . 1.. . . 1 , . . . ' I .j . . I I . 1 I I I I I _ 1. I I , J 4. J lam o a r ri •a I •• O • w a • 0• 111 I 1 , I ■ I 1 / . I 1 1 . . . . I . I • I I • I • I • I • W X11 2 Ca MH) S8313PIV10 NI H1d30 H3 I 'V3H Q — \ W a d •t • • ii=i Ii ac> -L : • • _ W Q J p t f- t ! r i=i sp if : ;Q . = * a w • v).. Ilib I IN L •L W r MO \ O L e F 8 O O O O 0 0 0— O O O O O O O\ . O O O O O O O 0. 00000 O O O O O O O O V • n• f /► N ^ • •• f r N - •‘ • n f ) N • • f n N III I 1.1 . 1 I 11..,!1..1,1..1.i 1 1 I 111111 I.•„►.I..LI..1 1 I i I1 11,1 . I.I.I I•.,,1,•I./ I I I I. 11 I•...I.,.ILI+,1 • N S33 NI (0) 308VH3SIO c \ CC F *3 31vId 1vUnionsis \ /N T O • 40 f N N 0 0 f N 0 f 0 N \ .D M 0 F 0 - o 0 N y ♦i� - OI O F O A f f \M'4 in In N N N - - - OD V 1 , 1 , 1 I 1 , l , I . t I I . 1 , I I 1 1 1 V 1 I i 1 I 1 X S3HONI NI (0) iti3A1f ) 3t) tl313NIV1t) _ �\ k w o oavoNVts ----� CL c N 0. t U) Q > > > > 0 0 U L L I I _USDA United States A product of the National Custom Soil Resource Department of Cooperative Soil Survey, Agriculture a joint effort of the United Report for .,, O \ RCS States Department of Agriculture and other A I b e m a ri e Federal agencies, State Natural agencies including the Resources Agricultural Experiment C O U n�y 7 Ntirginia Conservation Stations, and local Service participants ti,-% 4•, I, a, " ' , _ ,_ '-ti+; III k '4f G r , = .. 1, l� Q` M 1I • ♦: 4 i +yaP m . � � `o _ t.______--1-fl 2040ft -, a ° w ',,,,� v _ l February 7, 2013 Custom Soil Resource Report Soil Map N n a m m r. r 711600 712000 712400 712800 713200 713600 714000 38"6'1T ! 38°6'15" • \-___L,/,_____I ' '... / - e CV • 1•11 0 N N \ r r"po 1 \ ` e N N mg W Y - u4� , \\ V \ 14C ,- .. \\\ N �L 4i (1 i I \ N �� /(§ N _ $ `,, t o o n _j z; ll �_ • Ar• / ,e.? r SAG �. tr °o \--J � .g'+s,A.� ^r` _ \ 20p3 ED* `q 00 _.____ „ T` F t,ari `° % ' .`.:71 v3 -' ' ll,,,, ,,,144;ar.,:tthp; ,,T1 , '''' ! ' ),, F \ $ 1 e,..: 7f ""`�`r ..., N' 568 k °o H4, - r,..,\. ., :. r MO r , ti ` .�'tro 74C• ,a�' '\ Neff, ' • � V' � - a ch v O. L Ui c c \ �' J O Ma •r C' t,i.. w w . [ c.--- o fix; N - N 7 " MP 38°4'18" 38°4'16" 711600 712000 712400 712800 713200 713600 714000 ing N Map Scale:1:17,600 if printed on A size(8.5"x 11')sheet in o,) " N ,Meters "' 0 150 300 600 900 ..• Feet A 0 500 1;000 2,000 3,000 was ,a- o_n O c co co m n ui E m ° a) > N a) ° U N N U D) a N 3 0 a▪) m m ` m a a) O .0 N• -o U a) -o .P Cl) c p) E - Q m (n m ".E ° U a) O C ° co E Z - as O ` U N CO Q O O X E a) a) m C (/) m 0 m V) L i T M 0 C O LO a) L cC L) a a) a) V) Z < ?� .` m E N 0 E 0 . Z 0 Y c c Ge Q Q L Nr n c c m O a) Q -a U O as Q c °> a) 3 Y U ° m n a>) {L ° c ° ° 3 a) a6 o E ?, m a) N N O Q Q N 2 E O co e t1. N • a) �` Z C E U m L -o _0 E N 2 o U) m —0 n m a) -a a) a) a) n.Lm.. E_ra Qw ° 3 a) — 3 N C U .l c9 Q N t 'o• N ra C Co t Cl) Z E C N .. ° N '6 '6 ca _ m m o) N c Y T N m O _Co I— > a) N o) N a) m E >. N c .N-� O- Z >, N m 0 - '6 Co o ▪ > O c m 0 (/� a Q m m Q 9 ai >, E °' a.) c m• a) N rl m .N c To Vl N N O C O N < m y"cif • U) N V) U 'a a. U a) o Q O m n a) m m . 2, o n j a) a) E m E US H d E u) 5 0 IL- y U) U) co H 8 ._ o 0 0 a) a) U O a) ct O N T C E. c m o ° ° m U L n V) U) _� U o o co m m m 0 n U) 3 rr ?' '- Q) )y 7. p a) ` N N ul p > 0 c C7 Cl) 0 U V rn g a D 2 TU -) d 10 CI m LL a) t - , -. LL o z € .. W U) t - 0 w c U) 0 m m (7 a 3 f- W J CL < 0 w n o m U) w -p� a E ?' a`) Cl) 2 w O O m n o O.0 n ) 2 p 15 a) - U -= o m o• a o n 2 u_N Q_ n O d T 00 d m N ° n T a) U) n N >m a) 3 aa = LL L p c 0 >, P p p <) )a _ o ° 7•5 a -o E' 0 o m o m m m m m c •w a) o m m a) c -O n °U) •o m co U U 7 0 J _i 2 t- a Est u) co co U U) Cl) (I) U) a, a c 3 o " ® X • >; • € , 4 O ® > t . . Ill o .:, !fl : m )n a O 7) V) Q rn A Custom Soil Resource Report ki 3 L Map Unit Legend il , , Albemarle County,Virginia(VA003) 6 Map Unit Symbol Map Unit Name Acres in AO1 Percent of AOI 4C Ashe loam,7 to 15 percent slopes 5.6 0.7% • 4D Ashe loam,15 to 25 percent slopes 5.6 0.7% 4E Ashe loam,25 to 45 percent slopes 22.2 2.7% 5B I Belvoir loam,2 to 7 percent slopes 9.4 1.2%' 14B percent slopes 14C Chester lloam,7 to 15 percent slopes 42.2 5.2% 14D Chester loam,15 to 25 percent slopes 14.2 1.7% 14E Chester loam,25 to 45 percent slopes 11.5 1.4% 16 Chewada silt loam 8.6 1.1% I 198 Cullen loam,2 to 7 percent slopes 51.9 6.4% 19C Cullen loam,7 to 15 percent slopes 7.1 0.9% 20B3 Cullen clay loam,2 to 7 percent slopes,severely 8.1 1.0% 1 eroded 20C3 Cullen clay loam,7 to 15 percent slopes,severely 40.1 4.9% eroded 20D3 Cullen day loam,15 to 25 percent slopes,severely 13.8 1.7% iiii eroded 36B Hayesville loam,2 to 7 percent slopes 175.3 21.5% 36C Hayesville loam,7 to 15 percent slopes 73.5 9.0% II 37B3 Hayesville clay loam,2 to 7 percent slopes, 7.9 1.0% severely eroded L 37C3 Hayesville clay loam,7 to 15 percent slopes, 154.0 18.9% severely eroded 37D3 Hayesville clay loam, 15 to 25 percent slopes, 45.5 5.6% severely eroded 41B Hiwassee loam,2 to 7 percent slopes 23.5 2.9% 4283 Hiwassee clay loam,2 to 7 percent slopes, 2.0 0.2% ' severely eroded 42C3 Hiwassee day loam,7 to 15 percent slopes, 8.8 1.1% severely eroded 56B Meadowville loam,2 to 7 percent slopes 69.7 8.6% W Water 3.0 0.4% Totals for Area of Interest 814.7 100.0% 10 i 1 NOAA Atlas 14,Volume 2,Version 3 vLocation name:Charlottesville,Virginia,US" -Mono - 1 i Coordinates:38.0746,-78.5747 Elevation:568 ft* source'Google Maps "* , POINT PRECIPITATION FREQUENCY ESTIMATES k ; i G.M.Bonnin,D.Martin,B.Lin,T.Parzybok,M.Yekta,and D.Riley NOAH National Weather Service,Silver Spring,Maryland I i PF tabular I PF graphical I Maps &_aerials PF tabular 1 PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches)1 IAverage recurrence interval(years) Duration I 1 2 5 I 10 25 50 100 200 [ 500 1000 5-min 0.347 0.415 0.488 0.548 0.618 0.673 0.723 0.772 0.831 0.878 ' i... (0.313-0.385) (0.375-0.460) (0.440-0.540) (0.493-0.606),(0.553-0.682) (0.599-0.741) (0.641-0_797) (0.678-0.851) (0.721-0.919) (0.755-0.976) I 0.555 0.663 0.782 0.877 0.986 1.07 1.15 1.22 1.31 1.38 [10-min (0.500-0.615) (0.599-0.735) (0.704-0.865) (0.789-0.970) (0.882-1.09) (0.954-1.18) (1.02-1.27) (1.07-1.35) (1.14-1.45) (1.19-1.54) 15-min 0.693 0.834 0.989 1.11 1.25 1.36 1.45 1.54 1.65 1.74 (0.625-0.769) (0.753-0.924) (0.891-1.09) (0.998-1.23) (1.12-1.38) (1.21-1.50) (1.29-1.60) (1.36-1.70) (1.44-1.83) (1.49-1.93) 1 0.950 1.15 1.41 1.61 1.85 2.04 2.23 2.40 2.63 2.81 30-min 1 04-1.28 'i.:1' i 11 (0.857-1.05) ( ) (1.27-1.55) (1 A5-1.78) (1.66-2.04) (1.82 2.25) (1.97-2.45) (2.11-2.65) (2.29-2.91) (2.42-3.12) 60-min 1.19 1.45 1.80 2.09 2.46 2.77 3.06 � 3.37 3.77 4.10 1 (1.07-1.31) (1.30-1.60) (1.62-1.99) (1.88-2.31) (2.21-2.72) (2.46-3.05) (2.71-3.38) (2.96 3.72) (3.28-4.18) (3.53-4.56) 2-hr 1.42 1.73 2.16 2.54 3.03 3.44 3.85 4.29 4.90 5.41 (1.25-1.62) (1.52-1.96) (1.91-2.46) (2.24-2.88) (2.65-3.42) (2.99-3.88) (3.34-4.35) (3.68-4.84) (4.16-5.54) (4.54-6.14) ' 3-hr 1.55 1.89 2.37 2.77 3.31 3.76 4.22 4.71 5.38 5.96 (1.37-1.78) (1.66-2.16) (2.08-2.71) (2.43-3.17) (2.88-3.77) (3.25-4.27) (3.63-4.80) (4.01-5.36) (4.53-6.13) (4.96-6.80) f 6-hr 2.00 2.41 3.00 3.53 4.24 4.87 5.52 6.23 7.24 8.13 (1.77-2.25) (2.14-2.73) (2.65-3.39) (3.10-3.98) (3.71-4.78) (4.22-5.46) (4.74-6.20) (5.29-7.01) (6.06-8.16) (6.70-9.18) 12-hr 2.52 3.04 3.79 4.49 5.46 6.32 7.26 8.29 ' 9.82 t 11.2 (2.23-2.88) (2.69-3.47) (3.35-4.33) (3.94-5.11) (4.75-6.20) (5.45-7.17) (6.17-8.23) (6.96-9.39) (8.08-11.2) (9.05-12.8) 3.02 3.66 4.67 5.52 6.77 7.85 9.04 10.4 I 12.3 II 14.0 24-hr (2.72-3.37) (3.30-4.08) (4.20-5.21) (4.94-6.13) (6.03-7.51) (6.94-8.68) (7.92-9.98) (8.97-11.4) (10.5-13.6) (11.8-15.4) i gm 2-day 3.56 4.31 5.48 6.44 7.83 9.00 10.3 11.6 13.6 15.3 -g (3.20-3.97) (3.89-4.81) (4.93-6.10) (5.77-7.16) (6.97-8.69) (7.95-9.97) (9.00-11.4) (10.1-12.9) (11.7-15.2) _(13.0-17.1) '1 i 1 i 3-day 4.59 5.83 6.84 8.32 9.55 10.9 12.3 14.4 16.2 (3.44-4.20) (4.17-5.08) (5.29-6.45) (6.19-7.56) (7.48-9.18) (8.53-10.5) (9.65-12.0) (10.8-13.6) (12.5-15.9) (13.9-17_9) 4.02 4.87 6.17 7.25 8.80 10.1 11.5 13.0 15.2 I 17.1 4-day (3.68-4.43) (4.45-5.36) (5.64-6.80) (6.61-7.96) (7.99-9.66) (9.12-11.1) (10.3-12.6) (11.6-14.3) (13.4-16.7)j (14.8-18.8) „ i i 7-day 4.67 5.62 7.02 8.17 9.82 11.2 12.6 14.2 16.5 I 1&3 ( (4.28-5.09) (5.16-6.13) (6.43-7.67) (7.47-8.91) (8.94-10.7) (10.1-12.2) (11.4-13.8) (12.7-15 5) (14.5-18.0) (16.0-20.1) 10-d 5.30 6.36 7.84 9.05 10.7 12.1 13.6 15.1 17.3 19.0 1 (4.88-5.73) I (5.87-6.88) (7.23-8.48) (8.32-9.78) (9.84-11.6) (11.0-13.1) 1 (12.3-14.7) 1 (13.6-16.4) (15.4-18.7) (16.8-20.7) r20-day 6.96 8.30 10.0 11.4 13.2 14.6 1 16.1 I 17.6 19.6 I 21.2 (6 52-7.46) (7.77-8.89) (9.37-10.7) (10.6-12.2) (12.3-14.2) (13.6-15.7) (14.9-17.3) (16.2-18.9) (17.9-21.2) (19.2-23.0) 30-d 8.54 10.1 12.0 13.4 15.2 16.6 17.9 19.3 21.0 22.3 (8.04-9.10) (9.54-10.8) (11.3-12.7) (12.6-14.2) (14.2-16.2) (15.5-17.7) (16.7-19.1) (17.9-20.6) (19.4-22.5) (20.6-23.9) 45 day 10.7 12.6 14.7 16.3 18.3 19.8 21.3 22.7 24.5 25.8 (10.1-11.3) (11.9-13.3) (13.9-15.6) (15.4-17.3) (17.2-19.4) (18.6-21.0) (19.9-22.6) (21.1-24.1) (22.7-26.1) (23.8-27.5) 160-day 12.5 14.7 17.0 18.7 20.8 22.4 23.9 25.3 27.1 28.4 (11.9-13.2) (14.0-15.5) (16.1-17.9) I (17.7-19.7) (19.7-21.9) (21.1-23.6)8(22.5-25.2) , (23.8-26.7) (25.4-28.7) (26.5-30.1) 11 Precipitation frequency(PF)estimates in this table are based on frequency analysis of partial duration series(PDS). I !Numbers in parenthesis are PF estimates at lower and upper bounds of the 90%confidence interval.The probability that precipitation frequency estimates(for i a given duration and average recurrence interval)will be greater than the upper bound(or less than the lower bound)is 5%.Estimates at upper bounds are not! checked against probable maximum precipitation(PMP)estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Back to Top PF graphical OWN PDS-based depth-duration-frequency (DDF) curves Coordinates: 38.0746,-78.5747 do 30 1 i e r e e e I e e e e e I e e e ' Average recurrence eel 25 interval (years) c J£ 20 -nr 0 15 -._.. _ — 10 — 25 — 50 er. 't'3 a 10 , .. : ... ... .. .._ 100 E a — 200 5 - ... . . ... .. ........... ... ._ 500 -' -"'"7- yrr - �. — 1000 _ ,_0 :C* N ilis kW E E E E E r4 A v v v 7 v v v v • v 1A O 4 pp pp - N N 041 c Is. 2 N p Qs Duration 30 25 11110111111111 rr c •• 20 Duration o, — 54min — 2-day --• 10-min -- 3-day .r z 15 15-Min — 4-day M --- 30-min — 7-day 0. .49 10 ,,v�''. — 60-min — 10-day err a` — 2-hr — 20-day 5 --� — 3-4v — 30-day — 6-hr — 45-day ...� — 1241r — 60-day «. 0 —` 24 to 1 2 5 10 25 50 100 200 500 1000 Average recurrence interval (years) NOAA/NWS/OHO/HDSC Created(GMT):Wed Feb 6 18:59:10 2013 Back to Top AM Maps & aerials Small scale terrain Morgantown Cumberland Hagerstown ` Marietta Maryland N a Baltimore Parkersburg Winchester Columbia Dover , Bethesda Annapolis -/' C /' DeIa Washington H West Hamsonbu-g ,, Virginia Salisbury ton-. >, ctL esvilie 1 100 km I, I ,t,:�� ! Palmyra 50 mi I ', r•t Map data 02013 Google a a Large scale terrain a yr aato I r roe Pe/Rd Farmington Country C.,,k Barracks tvyRd 2 km 3 An. 2 mi � Map data©2013 Google a Large scale map sdale co v , s 44 Rd t:,r:>•+c_;�.G as ff Deep Acres Old Ballard Turner Mt Farm Wood University Merrxether X Commons Fowler H111 Farmington Country Cktb Barracks Kearsarge ivy Rd BeRalr 2km ,' i(rill ... 2 n Map data 02013 Google 1W Large scale aerial • • r ; of ►� .. ' - �g' Nd .. rte 1l !' Magery©2013TerraMetrics rrri