Loading...
HomeMy WebLinkAboutSDP202300019 Calculations Major Amendment, Final Site Plan 2016-01-15RV411 "«AC E REPORT CALCULATION ( STRUCTURE) SUBJECT REDSPORT PRO PADEL COURT SITING VARIABLE I I , , I I ToC �1 WK CUSTOMER RED INTEGRAL SERVICE 2002 S.L. C/ SANT BONAVENTURA 5 bis 08120 LA LLAGOSTA (Valles Oriental) Tel. 93 611 61 51 info(aZred integralservice.com www.redsport.es TECHNICIANS EMMA LEACH COSP, Architect XAVIER MATEU PALAU, Architect Street REINA VICTORIA number 4 08021 BARCELONA (Barcelones) Tel. 932 001 351 infoorv4.eu www.rv4.eu DATE JANUARY 2016 REPORT CALCULATION (REDSPORT PRO PADEL COURT) 1162 RV411 EMMA LEACH COSP, Architect, XAVIER MATED PALAU, Architect, Members of "Col Iegi Oficiald'Arquitectes de Catalunya", can membership number 26.741-4, Members of "I'Associacid de Consultors d'Estructures", numbers 51 and 92, with professional address in street Reina Victoria number4, Barcelona, with telephone number 932 001351, 629 830 050 and e-mail infolarv4.eu, xmateuRrv4.eu,www.rv4.eu as Technicians, gives the following REPORT CALCULATION PADEL COURTS REDSPORT PRO PADEL COURTS (PILLARS MODEL) 1%ACreE REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 2 / E2 RV411 CONTENTS I. CUSTOMER 2. FACILITY LOCATION 3.OBJECTIVE/CONTENT 4. FUNDAMENTALS 5. STRUCTURAL ANALYSIS B. TECHNOLOGICAL PROPERTIES OF THE MATERIALS AND DURABILITY 7. SIZING AND CHECKING S. JOINTS AND STRUCTURAL ELEMENTS 9. EXECUTION IO. CONTROL 11. MAINTENANCE 12. ANNEX A«AC E REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 3162 RV4 CUSTOMER This report calculation of the structure has been written for: AU Name RED INTEGRAL SERVICE 2002 S.L. Tax ID Code BG2297171 Address 5 his SANT BONAVENTORA street 08120 LA LLAGOSTA (Valles oriental) Telephon number +34930003010 e-mail address infayredinteoralservice.es Web www.redsoort.es REPORT CALCULATION (REDSPORT PRO PADEL COURT) 4 / G2 RV4 2. FACILITY LOCATION EMPLACEMENT 5 bis SANT BONAVENTURA street 08120 LA LLAGOSTA VALLES ORIENTAL BARCELONA '�If E Map of Catalunya pointing the region of Valles Oriental Map of Valles Oriental, pointing the town of La Llagosta Aerial pictures REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 5162 RV411 3. OBJECT/CONTENT OBJECTIVE Structural evaluation of the facility: - hearing capacity - serviceability -technical evaluation proposal to enabling the use of the facility CONTENT FUNDAMENTALS Fundamental source Actions Materials and geometry STRUCTURAL ANALYSIS Structural analysis TECHNOLOGICAL PROPERTIES OF THE MATERIALS AND DURABILITY Materials Gurahility SIZING AND TESTING Gate from the materials fat the project Ultimate limit states Serviceability limit states Fatigue limit states Steel structures against fire Steel structures against earthquake UNIONS AND STRUCTURAL Unions Structural EXECUTION Workshop manufacture Execution on site Tolerances CONTROL General bases control Duality Control Project Control of certificate of compliance of products REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 6 / 62 RV4 A ACE REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 7 / Ei RV4 4. FUNDAMENTALS — GENERAL RULES 4.1 FUNDAMENTAL SOURCE AND METHOD OF LIMIT STATES Safety criteria �;AC,reE The safety of a structure against a risk can be expressed in terms of the probability of failure, characterized by a reliability index value. In the EAE Instruction it ensures reliability required taking the method of limit state (section 8.1). This method allows to take into account the random nature easily variables and structural stress response in the calculation. The design value of a variable is obtained from its main representative value, by weighting by the appropriate partial safety factor. The partial factors for actions and resistance do not take into account the influence of human errors. These failures should he avoided by appropriate quality control mechanisms that should cover all activities related to project implementation, operation and maintenance of a structure. Design situations Design situations to consider are listed below: 0 Persistent situations, which correspond to the normal use of the structure. 0 Temporary situations, such as those that occur during construction or repair of the structure. 0 Accidental situations, corresponding to exceptional conditions applicable to the structure. Basis of calculation (method of limit stated + durability bases) Limit states are defined as situations for which, if exceeded, can be considered that the structure does not meet any of the functions for which it has been designed. Generally, the limit states are classified as: 0 Ultimat limit states 0 Serviceability limit states The ultimate limit state designation includes all those that produce the failure of the structure, collapse or breakage thereof or part of it. They are included under the heading of serviceability limit states all situations of the structure for which the requirements of functionality, comfort, durability or appearance required are not met. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 6 / 62 RV4 DESCRIPTION OF THE STRUCTURAL SYSTEMS This document aims at the description and justification of the different elements that make up the foundation elements and structure of the facility: GENERAL DESCRIPTION OF THE STRUCTURE Type of elements Facility height equal to or less than 4 meters Underground floors 0 Floors above ground I (roofless) Program needs. Intended uses Applications covered by CTE BE SE-AE Type of structure Oar structure (steel shaped profiles) Vertical structure Formed steel pillars Horizontal structure Formed steel profiles General geometric characteristics Regular geometry 20 x 10 m Modules 2 and 3 m General definition of loads Each of the structural elements are defined. Special charges will not he considered. Period of service, working life 10 years Other considerations Any amendment to the project must he approved by the Architect. DESCRIPTION OF NON STRUCTURAL SYSTEMS The envelope of the facility consists of nonstructural enclosure made of glass and steel mesh. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 9162 RV4 EVALUATION AND REPRESENTATION OF RESULTS Numerical analysis "' ACE proEfam Version Date License number Distribution company I Cypecad Especial 2016.d September 14, 2015 Actual 91987 (anterior 3458) CYPE Ingenieros S.A. Alfa Tecnologies S.L. 2 WinEVAB, iEVAB 2015 February 23, 2015 731.335 Ramon Sastre Sastre ETS Arquitectura Vall s- UPC 3 Abra Plus 2015 September 2015 ALTRA The three-dimensional structure is analyzed. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 10 / 62 RV411 BASES OF CALCULATION 1%ACreE This document justifies the different elements that make up the structure of the facility. Project status and current status, durability, safety and reliability are analyzed. RULES The legislation to consider in the project is: RULES Estructure CTE 00 SE Structural safety EN 1990 Basis of calculation Actions NBE-Al-BB Basic rules of edification. Actions in structure CTE 00 SE I Strength and stability CTE 00 SE 2 Service ability CTE 00 SE -Al Structural safety, Actions in building EN 1991-1-1(2002) : Eurocode I: Actions on structures Terrain Chapters VIII and IX from NBE-AE-BB CTE 00 SE-C Structural safety, Foundations Cement RC-00 Instruction for cement receipt Reinforced concrete EHE-OB Instruction of structural concrete CTE 00 SE Structural safety Structural steel NBE-EAE 2011 Steel structures in building CTE 00 SE -A Steel Structural Safety EN 1993-1-1(2005) : Eurocode 3: 0esign of Steel structures Fires CTE 00 SI Security in case of fire Earthquake NOSE-02 Standard seismic construction. General part and construction REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 11162 RV4 '4+ACE STRUCTURAL STEEL REGULATIONS the Spanish Structural Steel EAE instruction entered into force and is binding since 27 November 2011. For the European level, current legislation is Eurccode 3 (EN 1993-1-1 May 2005, revised in February 2006 and March 2009). A' • NORMATIVO. NORMAS NACIONALES NORMAS�ASS EUROPEAS Et C.T.E E.A.E DB SE -A Diseno y'Iculo Ambito de aplicaci6n: EAE vs CTE. Articulo 2. Ambito de aplicaci6n. El 8mbito de aplicaci6n de la "Instrucci6n de Acero Estructural (EAE)» se extiende, salvo las exceptions contempladas an la misma, a todas las estructuras y elementos de acero estructural, tanto de edificacidn como de ingenieria civil. En las obras de edfcaci& se podran emplear indistintamente esta Instrucci6n y el Documento Basico DB SE -A Acero del C6digo Tecnico de la Edificact6n. EAE: de aplicaci6n en todas las estructuras metalicas tanto de edificacidn como obra civil o industrial (a excepcidn de estructuras con acero "especiales" (limite elastico superior a 460 N/mm2, aceros inoxidables,...). DB SE -A del CTE: solo podra aplicarse en estructuras de acero de edification "conventional". REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 12 / 62 RV411 4.2 ACTIONS The actions can he classified by their variation in time, at: GRAVITATIONAL ACTION PERMANENT (G) DACE Gravitational action is produced by the weight of the components, the objects that can act by reason of its use, and snow covers. Weights are defined as follows: SPECIFIC GRAVITY OF BUILDING MATERIALS Source: Annex C SE-AE, Table C.1 Lightweight concrete from 9.0 to 20.0 kN/m3 Cinder 16.0 kN/m3 Concrete 24.0 kN/m3 (si fck>50N/mm2, Art.10.2 [HE-06) Reinforced concrete 25.0 kN/m3 Ceramic solid brick 1B.0 kN/m3 Perforated ceramic brick "Gera" 15.0 kN/m3 Ceramic bricks "tachana" 12.0 kN/m3 Natural stone de 24.0 a 30.0 kN/m3 REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 13 / 62 RV411 LOADS DISTRIBUTED LINEARLY 1 ACreE In therms of calculating the loads distributed sup erficiallywill he transformed in linearly loads for specific structural elements. In addition, it is considered Table 3.3 Technical Code actions on railings and other harriers, according to their category of use. The subcategory of use that can he considered is the C4 (areas for fitness or physical activity), with a requirement of horizontal force of 1.6 Won, but allow for dividing the value may he half that of the rails depending on the use made to both sides. REPORT CALCULATION (REDSPORT PRO PADEL COURT) 14 / EZ RV411 VARIABLES ACTIONS (Q): OVERLOAD OF USE Overloads of use for physical activities only apply to the floor. In accordance with Table 3.1 of OTE: '�If Tam 3.1. valores mraerensocos ae us sooreeargnoe use Cargo Cargo Cotegorfa de use Subcategorlas do use unNornm conceft a (MM21 [kN( A Zonasremdencwles At VNiendas y zones de habdownes an, hospi- tales y holeles 2 2 A2 Trasteras 3 2 B Zones adminisbatwas 2 2 cl Zones con mesas y sNlas 3 4 C2 Zones con asientos fijos 4 4 Zones de acceso al Zones sin obstaculos que rModan el Ibre C pubsco (con la excep- cibn de las superfx:ies C3 nlovInuerto de las personas comp vestfbulos de eddxws publx:os, admnislInd vos, hoteles, 5 4 pertenecienles a las saws de ex osrcion en museos� etc. C4 Zones destnadas a gmnasio u activrdades fisx as 5 T calegorfas A, B. y D) C5 Zones de aglomeracion Isaias de concm1os, estadios etc 5 4 01 Locales con a cuiles 5 4 D2 Supermercados, Npermercados o gmrides fines 5 T D Zones commoles E Zones de bafico y de api rcamiento Para vehiculos (gems (peso local < 30 W) 2 20111 F Cubienas transtables accesbles sob pf Nadamerte ai 1 2 G Crbiertas accesibles fnicamerte Para con- G1m Gubiertas con inclinacidn inferior a 204 114nm 2 CubiertasT eras sobre correas slnf 'ado 15r 04140 1 1 G2 I Cubiertas con inclnacidn supenor a 40- 0 2 servacidn 131 OVERLOAD OF USE Use category: C Uniform load 5.00 kN/m2 Subcategory use: C4 REPORT CALCULATION (REDSPORT PRO PADEL COURT) I5 / 62 RV4 VARIABLE ACTIONS (Q) DUE TO CLIMATE ACTIONS SNOW OVERLOAD �;AC,reE According to 00 SE AE, snow load is determined as: qn = p A where: p: is the coefficient of the shape roof, sk: is the characteristic value of the snow load corresponding to the project site and determined for the provincial capitals, Table 3.7 provides the snow load. Aiguafreda 438028.00 4624410.00 404 Ametlla del Valles, 1' 438668.00 4613334.06 281 Bigues i Riells (Bigues) 435386.00 4614388.06 307 Caldes de Montbui 430658.00 4609352.00 203 Campins 455505.00 4619535.00 321 Canovelles 440400.00 4607850.00 175 CAnovesiSamal6s(C3noves) 446377.00 4615621.00 346 Cardedeu 446656.00 4610070.00 193 Castellcir 429325.00 4623700.00 773 Castelltergol 427049.00 4622611.00 726 Figar6-Montmany (Figar6) 439708.00 4619262.00 330 Fogars de Montclus(Mosqueroles) 453800.00 4619800.00 386 Franqueses del Valles, les (Corr6 d'Avall) 441500.00 4607750.00 181 Garri a, la 440705.00 4615035.00 252 Granera 421775.00 4620300.00 782 Granollers 440939.00 4606563.00 145 Gualba 458800.00 46201 S0.00 177 Llige d'Amunt 436699.00 4607061.00 145 UigA de Vall 436920.00 4604922.00 125 Uinars del Valles 450207.00 4610046.00 198 Vilanova del Valles 440500.00 4600650.00 91 Dades obtingudes de la pagina web de I'Institut CartogrAfic de Catalunya, www.icc.es For other sites should be established winter climate zone that is first in the next map (Estalunyo is zone 2) and based on this and altitude, in our case 45 meters determine snow overload, according to the table E2. REPORT CALCULATION (REDSPORT PRO PADEL COURT) 16 / 62 RV411 V7 Na j +./g._Na' w 4 zoxa 7 J ® 4 ZONA 6 Figura E.2 Zonas climwicas de invierno Tabla E.2 Sobrecarga de nieve en un terreno horizontal (kN/mz) Akitud (m) 1 2 Zona de clima invernal, (seg(n figura E2) 3 4 5 6 7 0 0,3 0,4 0,2 0,2 0,2 0,2 0,2 200 0,5 0,5 0,2 0,2 0,3 0,2 0,2 400 0,6 0,6 0,2 0,3 0,4 0,2 0,2 500 0,7 0,7 0,3 0,4 0,4 0,3 0,2 600 0,9 0,9 0,3 0,5 0,5 0,4 0,2 700 1,0 1,0 0,4 0,6 0,6 0,5 0,2 800 1,2 1,1 0,5 0,8 0,7 0,7 0,2 900 1,4 1,3 0,6 1,0 0.8 0,9 0,2 1_000 1,7 1,5 0,7 1,2 0,9 1,2 0,2 1200 2,3 2,0 1,1 1,9 1,3 2,0 0,2 1.400 3,2 2,6 1,7 3,0 1,8 3,3 0,2 1.600 4,3 3,5 2,6 4,6 2,5 5,5 0,2 1.800 - 4,6 4,0 - - 9,3 0,2 2.200 8,0 - - - SNOW OVERLOAD qn Uniform load 0.40 kN/m2 REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 17 / EZ RV411 ,Ilk E WIND ACTION Applying the Technical Building Code CTE, according to Article 3.3.1 point 2 of OB SE AE, the provisions apply to buildings located a maximum of 2,000 m and in point 3, with slenderness no greater than 6 in the wind plane: .c6 According to the EC OB SE wind pressure or static pressure De, is determined by De = qh * Ce * cp, being qh wind dynamic pressure, Ce the exposure coefficient depending on the height of the building or facility and the degree of harshness of the environment and cp the coefficient wind or pressure depending on the shape. Simply put, the CTE can consider a wind load qh = 0.500/m2 forthe entire Spanish territory, but you can specify depending on your location. PO /1 �u7a.. Iwoa VL„b aT(�nnu—r zamaw wIN s°"° ra,apm �cwa $alg�yKa Sge+iel ��.. � AwY g ,,, y Abmelt B p p aaglb mqy O � epC Figura D.1 Valor bisico de la velocidad del vlento, vn Vebcidad bdsba delvients Im/sl Zena A:26 Zeaa & 27 Zena C:29 0 100 20& m REPORT CALCULATION (REOSPORT PRO PAOEL COURT) IS / 62 RV411 'DACE Calculating the wind dynamic pressure: 06 = 0,5 " 0 `vb2 (N/m2), where 0 is the density of air Cc] d [kWm'1 o 1.29 so 1.00 too o,e+S tso 0.835 200 0,7/8 250 0,876 300 0,818 400 O,fi26 500 OA87 TenpMature DsnaNie The density of air varies with the temperature. For simplification, it is considered 0 =1,25 kg/m3 Then, for the C Area we must consider 0.52 kN/m2, very similar to the simplification proposed by the CTE of 0.50 kN/m2. CODIGO VELOCIDAD VELOCIDAD PRESI N TtCNICO BASICA BASICA DINAMICA EDIFICACION VIENTO VIENTO VIENTO CTE Vb Vb qb DB SE-AE MIS Kmyh ktNIM2 ZONAA 26,0 93,6 0,42 ZONA B 27,0 97,2 0.45 ZONAC 29,0 104,4 0,52 Being rigorous, these values could be reduced, according to the wind maps of the Institute for Diversification and Saving of Energy IDAE, Ministry of Industry, Energy and Tourism Government of Spain, and WindEnergyDepartment, NationalRenewableEnergy Center (CENER). REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 19 / 62 RV4 '4+ACE In order to take account of possible turbulence caused by the relief and topography, should determine the degree of roughness of the building or facility environment, according to the table 0.2 08 SE AE. Tabla D.2 Coeficientes para tipo de entorno Parimetro Grado de aspereza del entorno k L (m) Z (m) I Borde del mar o de un lago, con Una superfice de agua en la direccion 0,156 0,003 1,0 del viento de al menos 5 km de longitud II Terreno rural Ilan sin obstaculos ni arbolado de importancia 0,17 0,01 1,0 III Zona rural accidentada o Ilan con algunos obstaculos aislados, coma 0,19 0,05 2,0 arboles o construcciones pequenas IV Zona urbana en general, industrial o forestal 0,22 0,3 5,0 V Centro de negocios de grandes ciudades, con profusion de edificios en 0,24 1,0 10,0 aRura Tabla 3.4_ Valores del coeficiente de ezposicion 4 Altura del punto considerado (m) Grado de aspereza del entortw 3 8 9 12 15 18 24 30 Borde del mar o de un lago, con una superfine de agua en La 24 2.7 3,0 3,1 3,3 3,4 3,5 3,7 direociiin del viento de al mans 5 km de longitrd II Teneno rural Ilan sin obstaculos rr arbolado de mportanaa 2,1 2.5 2,7 2,9 3,0 3,1 3,3 3,5 INZona rural accidentada o Ilan con algunos obstbculos aislados, 1,8 2,0 2,3 2,5 2,8 2,7 2,9 3,1 eomo irboles o construcnones pequenas IV Zona urbana en general, industrial o forestal 1,3 1,4 1,7 1,9 2.1 2.2 2,4 2,8 V Centro de negocio de grandes ciudades, con profusion de edficios 1.2 1.2 1.2 1.4 1,5 1,8 1,9 2,0 en altura In our case the Grade II is considered as the second worst. Graininess of the environment (Table 3.4) II Maximum height of the building or facility 4.0 m (one floor) Wind dynamic pressure qh 0.50 kN/m2 (for entire spanish territory) Exposure ratio Ce(table 3.4) 2.5 Thinness in the plane parallel to the wind 0.84/ 1.15 Wind pressure coefficient cp 0.80 Wind suction coefficient cs -0.50 / -0.60 By application of other overloads, this can be considered with the following horizonal component: NINO OVERLOAD NINU (SHE Annex 0) Uniform overload 0.50 kN/nn2 REPORT CALCULATION (REOSPORT PRO PAREL COURT) 20 / 62 RV4 '►ACE VERIFICATION OF THE WIND FOR THE EUROCODE The values of the Technical Building Code CTE are superior to those of the Eurccode. As for the wind, it applies Eurocode I: Actionsonstructures - Part 1-4: General actions - Windactions [Authority: Per TheEuropeanOnion Regulation 305/2011, Directive BB/34 / EC, Directive 2004/18 / EC]. me currentwmo map is: b n m 27 A i O _ 26 •.......__s :.35 s s � s f 4 31 •. 1/ 21 ar ) Y� ..gm.naa.sn.an Fig. 7.2 — Maps eolico ew opeo (solo calores iudicativos) While the technical code turocode gives almost identical values, Comparaci6n con Eurocodigo 70 M01215 11 nolementatlon of CTE in structures. Structural Consultants Association. February.'. the reverse calculation is made, based on the maximum stresses, the unknown of the maximum allowable wind speed is cleared. REPORT CALCULATION (REDSPORT PRO PADEL COURT) 21 / 62 RV411 '4+ACE ,.g.vEq, sopsl. wn,.a �Na am... n� Z. well below the acceptable and supported: VELOCIDAD VELOCIDAD DENe PER EDO CDEFICIENTE MEFICIENTE PRESI N C FICIEmE WERai NTE VELOCIDAD TIPO DE VIENTO ElASICA E ICA ^mE DE coB CToa EZFosicion DINAMICA VnvaacmN 1eNOPACION MAXIMA SOPORTABLE VIENTO VIENTO el�l RETORNO C` VIENTO ae MAnM ES VIENTO ESCALA BE BEAUFORT Vb Vb aAos qb Vb MIS KMh kNhn2 Km/h 26,8 96,6 0.00125 20 1,00 2,1 0,450 1 1,5 1,05 152,1 EN-3RAL.URACMADO:NURnc>w Applying wind pressure service (laboratory wind tunnel) of 450 N / m2 maximum speed of 152 km/h is supported. According to the Beaufort scale of wind force (empirical measure for the intensity of the wind) mlllu Ileauron Vbma(opYb) nswkwn) <1 Gnominm:l6n Calm 0 Oat 1 2a6 1e3 Vnnlollnn FbIXo (&lee muy t eatt 4a6 tlibiN 12a18 7a1O Fb)o (Brien L'gme) Bonanelble (&be 20a28 11a16 motleretle) Fleaqulto lBriea 2Va38 17a21 lreaca) FmM(&lae 3Va/V 22aTy luene) Fmex66n (Vbnta sOae1 26a69 wane) Tamlwnl (Vbnto 62a]/ 30a4I0 tluro) TMponl roMe ]B a 68 41 a 4] (Muy tlura) TMIPnml tlum B9a102 48a56 (Temporal) Tmrgoml my tlum 103a11] SBa63 (Borraera) Tmrgoml ♦116 •61 kunranatlo (Hurufn) NOmme tln wlenlew al Mnton ( for the most unfavorable position within the Iberian peninsula, facility would resist a hurricane REPORT CALCULATION (REDSPORT PRO PADEL COURT) 22 / 62 RV411 DACE VARIABLES ACTIONS (Q) SPECIALS, THERMALS o RHEOLOGICALS Since the element is subdivided into units of length less than 40 meters, they are not introduced into the structure the effects produced by thermal and Theological Theological. In the structures built with materials in which deformation occurs in the course of time, due to shrinkage or creep under loads, it should he noted dimensional variations. The Theological actions are contemptible, generally in metal materials. In the calculation of the deformations, the following values for the thermal expansion coefficient was taken: COEFFICIENTS OF THERMAL EXPANSION Reinforced concrete 0,000011 m/m°0 Laminated steel 0,000012 m/m2E REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 23 / 62 RV411 ACCIDENTAL ACTIONS (A) LOW LIKELIHOOD EARTHQUAKE RESISTANCE �AC,E Standard Seismic Construction, General building part and NCSE-02, replaces the Standard seismoresistent NOSE-94, which replaced Standard POS-1 (1974) Part A. The scope is the design, construction and operation of buildings of new construction and rehabilitation or reform that involve substantial changes to the structure. The ultimate goal is to prevent the loss of human lives and reduce damage and cost. VALORES DE LA ACELERAC16N SISMICA BASICA, Ab, Y DEL COEM&EHT CONTRIBUCI6N, K, DE LOS TtRMINOS MUNICIPALES CON Ab20,04g. P IA DE BARCELONA LLACUNA LA 0.04 (1.0 LLINARS DEL VALL S 0.04 (1.0) LLI D'AMUNT 0.04 1.0) LLI DE VALL 0.04 (1.0 LLIJCA 0.06 (1.0) MALGRAT DE MAR 0.04 1.0) Field of application New build (testing) Construction Classification Normal importance Province Barcelona Town La Llogosto Value of basic seismic acceleration a/g= 0.04 g Coefficient value contribution k= 1.0 Type of terrain I Coefficient C 1.0 Application criteria of Rule Not applicable rule. Implementation of the NOSE-2 rule is attached. Seismic hazard maps J { r. 1; 1 'J 406 (♦ �a0.10q (♦ Q1Yocy<0.10a � amo.�m.rm ' =SA41 u K REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 24 / 62 RV411 FIRE In this report the charges by fire or fire risk are considered simplified in annex. IMPACT In this report the loads due to impacts are considered in use as physical and/or sports activity. EXPLOSION In this report the result of the explosions loads are not considered. DACE REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 25 / 62 RV4 4.3 MATERIALS AND GEOMETRY 4.3.1 MATERIALS As for the materials applied: ,W,E CONCRETE Typification Foundation: HA-25/13/20/lls Structure: HA-25/0/20/1 Characteristic resistance at 28 days 25.0 N/mm2 Characteristic resistance at 7 days 17.5 N/mm2 Cement Type RC-97 CEM I, 32.5 Type of environment (aggression) Foundation: Ile Structure: I Type of sand and gravel Boulder Maximun sand and gravel size 20 mm Consistency Soft consistency (B) Maximum water/cement ratio A/C 0.65 Resistance at 7 days 17.5 N/mm2 Abrams cone settlement 7+lcm Compacting Vibrate Concrete control Statistical Serial number of samples for testing I sample Number of samples for set 5 units Testing frequency each concrete unit, and/or by the Duality Control Plan Type of samples cylindrical, 9=15 cm, h=30 cm Date break I unit at 7 days 2 units at 28 days 2 units for reserve Systematic testing Abrams cone Tolerance ticm STEEL Type B 500 S, weldability B 500 SO, weldability high ductility Elastic limit 510 N/mm2 Steel control Normal Deduction Coefficient 1,15 Resistance of the bars 443,5 N/mm2 WELDED MESH STEEL Designation B 500 S Elastic limit 510 N/mm2 Unidirectional slab 95 mm #30*15 Cm Odd slab 95 mm #20*20 cm REPORT CALCULATION (REDSPORT PRO PADEL COURT) 26 / 62 RV4411 AU LAMINATED STEEL Typing (ONE EN 10015, ONE EN 10027-2) S235-JR S 235-JRH (hollow profile) characteristic strength (elastic limit) e< IGmmue 235 N/mm2 Tensile strength 3 <e<100mmOr 340-470 N/mm2 Modulus of elasticity E 210.000 N/mm2 Stiffness modulus or transverse elasticity G 81.000 N/mm2 Poisson coefficient v 0.30 Coeficiente de dilatacidntbrmicaL7 1.2/10.0001/9C Density p 7.850 kg/m3 The steel you need di Collaudo EN 10204/2.2 FETNOS AGUallsl. a ogne•gsna+I�P vErrn]raA >I lxogolor.GeuxnEs EN 102102006 PROFILATI CAVI FORMATIA FREDDO DI ACC WI NON LEGATI ZINCATI acdab: DR51D Fn-xA 02 t110Wi11A101 P�vGgb M�Itl CNnb Pmu4 msccvJCM�TqubpYJr Tpaceu LagMu+ OO �411� q O MKG 40A q.16 Q%J aq+e QOA OImO 316.]B A]H ivm � 19 O 9®K6 4a19 gB39 q01] DON 0.MB Dan AAS1 UBg15 21a1 Qeio OS OE 19 O HBOKG a01B OblS O]0 OOu 4M] Op0 619aE 3119] AfE FAtsglo N➢ M 2W B130 IMOKG 40✓`I 0.4E Q013 a01e a019 O.bt 3N.Q1 '1BI.12 MBA gnixxp'o ID) ( I 2N &100 0.0Ni 0.A9 Wi± OP] aUa ]mR 3LM 9AB gMsgYo C®O �® 100 15D BWO uAKG m 4g OE OSi1 WIU UA1B OOA W1A aQi! Dql] IIIe�11 OOf! IOfiAB A14A ]AID 3AA3 A.11 AR9 R91spAo Oi0 090 19 ® mKG ® U614 OAI9 aUw 0.0] 0.m1 W.OB mm A;P io ® FE::I Im I WN 0 191OKG jOH 0.'{B U,OTl 0.U1C OAIB QOai 4A.a5 T19§ Cla'10 AD Ma MKG W3 Wt] 771=1 AN.M 11 3xm Aw ) Technical data sheet attached. REPORT CALCULATION (REDSPORT PRO PAOEL COURT) 27 / E2 RV411 '►ACE For each sheet the maximum details are required by: I origin and Guarantee: leaves supply and/or labeling or marking 2 Administrative Authorizations 2.0) marking Documentation: Declaration of Conformity CE Certificate of Conformity CE factory production control, BITE 2.6) Duality certificates 3 Conformity with technical requirements 3.0) UPC: additional label CE 3.6) Warranty, according to product standard: seal, mark or conformity. CCR, homologation, mark AENBR 3.0 Tests according to standard or specification 34 Certificate of origin as standard or specification 3.e) Technical data sheet 3.f) Duality marks 3.g) Technical suitability assessments REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 26 / 62 RV4 ,Il ,vACF CLOSING MESH (NO STRUCTURAL) Description Wire mesh, welded Regulation EN 1006B-5 Finish Galvanized, protected Measure 50f50 mm Thickness U 4,0 mm Compressive strength 58B-7B4 N/mm2 Tensile strength 772-783 N/mm2 The degree of opacity or solid is the proportion (46.2 `46.2) / (50' 50). To a thickness of 3.8 mm would he a 14.62%and for 4.0 mm would he 15.36%. TECNOMALLAS CERTIFICADO DE FABRICACION nueto eas 1[cxaMacW -.a Z4 c ., _ rhea es s s gu entes ca2c[ene4cesae laexm1.e1.9aivanxeao 4ue felnce, reunm 51'iEN 1e e1.0 a3.11 ��e '^Ole maaa lesnmme[I^n I501e nacaan, elamcieeA. aaeerenueYmlerancNs, nunm rts 9e claa nee�a eaam ourma ayxe 'nnawe., mnea�ro �. nae eam�eeea [e, c•• m.m xma .nrvne oo:rermee amltm r •�s•Lnao eo, x a< rmae. d,....: inrm:alaa, wxbll a u',;maao "area, n.xa..x,l.a r e mn.e�.., eHnneo as .aclen, Y .nnaan .ume.ea fe.enuaao de I.eo mm.ee 'mae aam eow. sanr arere s6mmre,,. wnrv�ro ee zma cn=1AN CcarurnErnos fwnaw ee PIYeGIff rN AfNrii, v[ JII'. I C+pn, b0.nfa, EEPfHA ♦IMM:Vri ro...-. [n.. _EmerlfMafrBnf•{yyg ©� MRTL,,: awe: io_:. 1.3.r9EiJlgpp-rufGG lonpff l•]q 3l SJ3 ,. E( CERTIFlCADO DE INSPECCI (INSPECTION CERTWICATE fn.n•..a. wmK[Dowuun KPCDDae a M[® fp1R[W{R[p4WRR Lyp. pErfflyUl RAp6.prp p; a Rf®mrR01[R 115►011Q10 4Mrpo••r. [tlGCW�a9ePy tA[MOm rY..r[tx !0!i rLe wR roe. A'w e•n+• •aff.�e•Pfnf[rcwr ,f 1 , rnrorP �u.m: +woof mflawn.nlea•tRcef u+ n 1 •,l0004[[�•tp:4R9MaM [RniNt R VIaCEt,![tl: Kr Me1HA Y roof7.M010[f /DWOrrf - eRlpyf'yepryf,eEt[I101f�sr 1[M �[ps4Cdaf!•W. WIf:111BRaO1fTYIH a Yrwfdanr [1 ?]D 0[[Uer•LO•[laCmY'NFIICE lV01eV.eOIM Rf r 1.W 006 .4.'J6 KMCNIr6 v' i> Y�Iff>.•y �•Ir•elplf afas•ea delwaP.DO•f wuw�ee W�trq tM.MRMM OImO•a s[m t•wafm•rs.,wiw• 4 rri[Y ••PO•. Inn • ROT O� Vr•RA a•1{' w.Cao. iR,Y rpC[ N ryYfl J,O Wii1 'ii2 N 313 fif50fi 712, W Technical data sheet annexed REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 29 / E2 RV411 'SCE SHEET STEEL Description Laminated steel sheet Regulations EN 10090 Characteristic strength (elastic limit) e< 16mmoe 235 N/mm2 Tensile strength 3 <e<100mmOr 360 N/mm2 - �— Jnx M•G]rlvvY EmicL. S.L. TYL W2197 M - PoR W 110 7001 ID © CE DO 10 10 u...EwrFnwan�+.n w.EF-Nw CERTIFICAT DE QUALITAT RRTx p V x-gLeRM uPoE ELIFM GEOMETRY ENYRESARNF SI. II"CCIMNOa: OPoo. 20 XMW W SO Ols10N. gMFMPONE: LM WDLIHOl1 CXV. eau\ — Wmm 1 W.un % 9lEN ERF[£u 01. PEC. P H \.Men !n m MNo ANALIS OUYN: W !I r ] N am o]a1 am op! ovn OOW Technical data sheet annexed `�---�������-� JOw M•CRrsnavY. Ennc\, S. L. �}'7 mN� TeI.W2197259 Foe 90110 TO 61 QI Q Ell O❑ n �m.art�ena.cu.orm.. u.a r, m CERTIFICAT DE QUALITAT vxix uaan. w\�]YRrx. Emv CIIFM OF(IYFIRN EYRRES\RNL 9.L. rcaMNxO\, Ouevr\r von gNEMYIOYE+ LI'1fON.1GM+N 000AYIDR � rew�ce a Iu+n a•e I _ .:Illlill!li A LIST WMK O W !I • i N 0m am 00m Oa am. RIn REPORT CALCULATION (REDSPORT PRO PADEL COURT) 30 / 62 RV411 SCREW - Description Usual screw Regulation EN 1504B-1 TORNILLO PARA PISTA PADEL M.8 LARGO 35mm CASOUILLONYLON D.3al17mm N=9mm 90' 0 30mm EY+E210a +em.4 DETALLE TALADRID AYELLANA00 Technical data sheet annexed REPORT CALCULATION (REDSPORT PRO PADEL COURT) 31 / 62 RV4 "+ACE SELF➢RILUNG SCREW Description Usual selfdrilling screw Regulation EN 1504B-1 EN I090-2 §8.8.2 FFTXA 06 %6b FT DRD F a 2110Nz INDEXFICHA TECNICA 17 Gi0v:a nd.0 o.:.•ndnwid 0. MEOIDAS GEOMETRICAB V. TORNILLO ABE (DIN 7504K): AUTORR05CANTE PUNTA BROCA CABEZA HEXAGONAL CON ARANDELA EOTAMPADA a �� dp .i dk I K Irtmi • Aal><Ido clncaK)o icOdlgo ABE) • Uso general on unionee cAepa-chaps • Varsiones om araMala EPDO monlada (Tara ciene estanco en !aclladas y whiertas lWn%ullar FW1d TEcnka ARVUL) • l e s 000DD A Ndn xrnnAnk rnheoe +m ST J9 R BT �.= A3 9T' 1.8 9T 5.0 8T 8.3 12.6 k:w wi mown :m 33 4.1 4.3 d.3 8-D c: es WI arsnAHa 1.2 1,� _ 1,0 8 _ 1,91 8 _ to a: Ilaw 8'a B 7 0: tiannro BxlBrgf rosy !nJ d�darulrofnbdci men— 3,53 9.22 i.88 S•G 0.25 3-10 358 4.17 4 nm mcd 1.3 1J 18 1.8 !.8 I: - (Y� -13-36 /3-3fi 79.75_ la- IOU I :!e fud mawme de •oeoo m o0 oD _Go homes r�alac�n BGCAOOa BO:.A007 90CA009 B(X•.A00a BOCAOtn odod N Inladmdo 0 7D - 226 I78 - 300 t.76 - 4.d0 Technical data sheet annexed REPORT CALCULATION (RERSPRRT PRO PAREL COURT) 32/ 62 RV4 'DACE ANCHORAGE Description Expansive mechanical anchoring Material Steel Finish Zinc plated AM Stainless MI-A2 Galvanized WHO Diameter 9,10,12 mm Length <100 mm Technical data sheet annexed ------------- ■ww I FICHATECNICA NI-A2 banN b AM -HD oew.,.laaao - LLAMACTENISTICAS A"I'. meliiiee [m pn,np de funebnamrnle padpan�M a mAalaBp� pa ¢nlmlaab Fpaumeppo. U. Pn pomngfn no fieVatb FHIIa.... croloo Ion . ae media>aw. f. Lyk ae en orueo, a^em IEM IWk A) (Wn gMDa e a AISI b] s dpnl.Y npaaadoan b[nitr IM* EN ISO WBgconpapaavvidaUe Aa enriwpn ,onq. opleaan.vasigogo t✓.em as aam.moaryar VarlaYd pc'mpMWaa y diama6P: n M.. M I. ee al meMaja. WSpmllaMg— an iaen MB.M10Y .Ytllfall6]tl use er gacm M an<lyea9ruvava oen nulnieka damn haPbpemr REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 33 / 62 RV4 "+ACE NUT +WASHER Description Material Steel Finish Diameter 16 mm Length 125-280 mm Referera:3N FT Y01 F.,h. BYdA7 IMEx FICHA TECNICA RevelOn 9 —.L• �• •.• DCalRrvawa •�• PAOry 2a07 OIL 2. MATERIALES rro 3.-DIMENSIONES .hflClyl tRM _ her I r dw h, hL REY COIIRONBRE gCEPO CIIICA� I ACERO INOIJDA6LE q2 'AL""'CON pRAM180N M A['Prtt al falilrmo ' ACCOA [dlfi]DD 1 6F caWrrpxoc.+irb, ArrimmnrgnM OraCn A9 celNmp�can /no, nncwD e � {}n I:O ydval: Wtlu a 1:dlleiYe z 6n11 AZJ 20,m uM1F EN 16014 1 , DIN 120 D pN y02 r DiN125 a DIN N121 aura NNwdatla, ON 125 yeNNrcdOe 2 APAN)ElA G1D3Ba251in1.� A®'/dnITdR891 r11br1112 A017 A2J 70 IJ�EN ISO :ae1 DIN 9YI Case 6160 DIN 831 class 8160 OOB4 3 TUERCA R9A-r urcNdaz allm nIN y34 aGlrn inn%idaDa. O1ND A] OBIwn12808 eD Ca1lBrae2 160 dfM2 A21 20 pm UNE EN ISO �d61 A<ero CC03 EN101Z38 d f8W}A oSGCD JIS G31r1, �roiroMaable. madc A2 Acaro nOfotlH%e. yfaOBM. Gincia8 z.9 pm 160 � d A' J NI6TRICa YB Ml Y10 E12 YL Y18 1108 N2t 4cflC GnLNdO AMIbNIl AA(e}A% AMiUMA ANI!%Yl( AMIA%M AMrA%lA AINMM} ANM}N% i� AtdrO iamliad7b A2 AcaoCaben¢ddDancelP!nb rAww1% -' NEaN(% .raxal%1% NlapfU( NIIOfN%% MnRM%% ANgRpD _- — Nn04{ NRaIOrX - ANIO�Y%i aNa[OaDX — q,:dWrlMrnNjN Imm1 a e 1B 12 a 16 2D 2a {�, IdrgzDaNN cnaNaa ( ] lro brgyutlde lndrla. (mn] 601bD 64110 60.tSfi :6116 74730 i4160 00.160 170.260 25-20 a 174770 tOC-78B t254'D 170270 — � IWgtUticsgeMmiadN (mm] - miss 7(}210 7.6 OC260 - 125220 174270 16: dameaD danA 9dwu (roaj a 8 0 108 12 18 2C didm<fro ansndela (mmj m; wPOaor anndde immJ :2 18 20 24 23 30 W 14 1.8 1.8 2 2.6 25 22 3 2a 3 d q,. IlNw lwroa Inwj 10 13 17 10 30 36 Technical data sheet annexed REPORT CALCULATION (RERSPRRT PRO RAREL COURT) 34 / 62 RV411 ,WE GLASS Description Thermally tempered glass Regulation IN 12150 Hestsoak: IN 12149 Thickness 9-12 mm Performance under accidental human impact I (C) I Flexural strength 164,5 N/mm2 N20 N/mm2) Flexural strength for durability 126,0 a 142,5 N/mm2 Thermal shock resistance 200 °C Horizontal span calculation between supports is 1.88 m. The upright is 1.10 m. In no event will the diagonal of 2.18 m for uniformity among nuts. piu.yof MENma nn 9R'M An. em.nblfol Wade cc, upu. mmr.. DRIJTPLERIA3 TRINIDgD.JA. NNE -EN 1H60.3:R06 C'Gml nla6uen•: OAI05Iha Ne VYl'G �1 NNIe b Elkae BebYikm 6 SpuMe MpYep fkNNYanN nn.n if I W a. n EiM.. y Oka b O.Nlwalf n rtl faaHm E^^ae1°akw n/uv.0 Aa nauw. MOATcb R.D1T Wma a.1l em 4.12 ®lulno DOm � v.ealm .ea ex..x.e YVRm..lool FwrP V.NiW_ a.l m Ya WF.9Y IHM',Mn 1.1 nm 9: Wxtimnowoa.olgoo9so n. EYY PM•oam_N.nn lM lJrM 10.L.a,v 1 C) I ae ll.awa INMYMYx9N>DI Y..Ca MAe,s YMA`NOI.n.No.mf pyG�VYm.sal.b EMNp HNaYaeea Rabe 1.9 .m..l 1M.9 a110 WFiN 1H\I:NW E.aYaa.daxab �„N�;" 1n,s 3B5mm �w.NGrtllareNo+aMUnn'1 E .mE. t2ti"Alq). IVavme•.J Ips1i1e0]/VI.t051W nW00 tHA .mNYam _ ].mmm Ma.mdVira.4nw'+1 19 aaOlr Enupaefynm.b 1e WEEN Q1N�:'A00, yay.a mmaYnLlmpx�ulmmm wnl H Ylm 111mm .Na amwatma. N.mmr rwy�^ al •O aMlao! kgaaaNWnNmklma9mnil 19 e1m maYW.rwIMa ' 'eilii9C c.v unlplmpuunvl4 16V Mrnvopl_N4nty 5A Technical data sheet annexed Changing these data it must he explicitly approved by the Architect. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 35 / 62 RV4 4.3.2 GEOMETRY w«AC E � zo.oa 3 7.00 ] fil REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 36162 RV4 '►ACE 5. STRUCTURAL ANALYSIS BASIC CONCEPTS The structural analysis consist in to obtain the effect of actions on all or part of the structure in order to perform checks and ultimate limit states defined service. This analysis is performed using appropriate structural models coniseren the influence of all the variables that are relevant. STRUCTURE Structural models To perform the analysis the geometry of the structure and the actions and support conditions are performed using an appropriate mathematical model should also reflect the conditions of rigidity of the cross sections of the elements, theirjoints and connections with the ground. The structural models should allow consideration of the effects of movements and deformations in structures or parts thereof, in which the second - order effects significantly increase the purposes of sections. Elements models For analysis, the structural elements are classified into one-dimensional, where one dimension is much larger than the other, two-dimensional, where one dimension is small compared to the other two, and three dimensional when none of its dimensions is substantially greater than the others. Span It is considered as span of a unidimensional element the wheelbase support or distance between their points of intersection with the guideline of the adjacent elements. Static constant cross sections The global analysis of the structure can he made, in most cases, using the gross sections of the elements from the nominal dimensions thereof. In one-dimensional elements, static constants to consider are the area, the moments of inertia about the principal axes and the uniform torsion module. Consideration of the effects of distortion in closed section elements In members subjected to torsion, and areas of application of concentrated loads of some entity must consider the effects of deformations distortion of the cross section when they are significant. It's not the case. Stiffness models of icints Depending on its relative rigidity with respect to the elements to he connected, the connections are classified into joints, rigid joints and semi -rigid joints, whose deformability is characterized by its moment -rotation diagrams. The connection design is studied to minimize the possible eccentricities between the barycentric axis of the connected elements, so that the side forces due to possible rotation stiffness of the joints are minimized. Stiffness models of foundations In those structures whose behavior is significantly affected by the conditions of deformability of the foundation ground, the analysis should be addressed through structural models that adequately incorporate the effects of ground -structure interaction. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 37 / 62 RV411 OVERVIEW Methods of analysis DACE Every structural analysis must satisfy the equilibrium conditions and compatibility taking into account the laws of material performance. The methods for the global analysis of a structure are classified as: A) linear analysis, based on the assumption of linear elastic behavior of the materials in considering the balance of the structure without deforming (first order analysis). D) nonlinear analysis, taking into account the non -mechanical linearity, that is, the nonlinear behavior of the materials, and the geometric nonlinearity, that is, considering the equilibrium conditions of the deformed structure (analysis in second Order). C) Non -linear analysis may consider, in turn, one or both of the above causes of nonlinearity. Consideration of the nonlinearity of the material Depending on how they are considered or not the effects of the nonlinearity of the material, methods of global analysis of the structure are classified into: A) Elastic global analysis. D) Plastic global analysis. C) Elastic -plastic global analysis. The elastic global analysis can he used in all cases, with minor precautions. Elastic global analysis The elastic global analysis is based on the assumption of a linear performance stress -strain law steel. This is a linear method that supports the principle of superposition. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 36 / 62 RV4 'I I '►ACE CLASSIFICATION OF CROSS SECTIONS The grouping of cross sections into four classes identifies the influence of local instability phenomena sheets (Dent) of its compressed on its strength and rotation capacity areas. Plastic, compact, semi -compact and slender: Depending on the influence of sheet instability problems on its tough response four kinds of cross sections are defined. CONSIDERATION OF THE EFFECTS OF SHEAR LAG Spreading the shearing force from the edges of meeting web and flanges compressed or drivable, of linear elements, with open or closed sections, resulting in a non -linear distribution of the normal stresses in the flanges panels of said sections. For practical purposes, for checks sections and for estimating flexural stiffness that are incorporated into global models of structural analysis, it can he assumed that the normal stresses are evenly distributed in a certain narrowwidth flanges, called effective width. CONSIDERATION OF IMPERFECTIONS The second order analysis of the structures whose response is sensitive to deformation of its initial geometry should adequately consider the effects of residual stresses on the nonlinear response of the steel as well as the inevitable geometric defects such as vertical imperfections, alignment, flatness, eccentricity adjustment and unions, and other performance and assembly tolerances. LATERAL STABILITY OF STRUCTURES The influence of second order effects on the strength of a structure basically depends on its lateral stiffness. Lateral stability of a structure is typically generally guaranteed by: A The inherent stiffness of the truss system with rigid nodes. B triangulated lateral bracing systems. C lateral bracing systems using screens or rigid cores. 0 By combining some of the above structural schemes. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 39 / 62 RV411' $►ACE METHODS OF ANALYSIS OF GLOBAL STABILITY OF STRUCTURES In all those structures whose lateral rigidity is not enough so they can he considered as non -sway or braced, according to the criteria established in the Steel Instruction should he checked their overall lateral stability by the methods described, which consider second order effects and imperfections geometric equivalent. For this type of structure and global method to analysis, consideration of second order effects and equivalent geometric imperfections can be addressed through a comprehensive analysis translational include all such effects. REPORT CALCULATION (REDSPORT PRO PADEL COURT) 40 / 62 RV411 PILLAR P1 Esquema Dimensiones Acciones DACE REPORT CALCULATION (REDSPORT PRO PADEL COURT) 41 / 62 RV411 Moto->uneeto: ui:-> Compmsi6n. verve->Wdn e) ;� ACE Aao. coNemes M1bmenba Annexed numerical results. (Rojo -> Traccidn ; Cris -> Compresifin ; Verde -> Variable) 0.015 kNm -2 0.225 kNm M 0.99 M. 0.795 kNm Defonaciones Reacciones Tenslones REPORT CALCULATION (REDSPORT PRO PADEL COURT) 42 / E2 RV411 PILLAR P2 Esquema Dimensiones Acciones 1%ACreE REPORT CALCULATION (REDSPORT PRO PADEL COURT) 43 / 62 RV411 ftja -> 1.16.: cnr -> comers 16n Nrtle -> vxnxma P aim mm 7xn —'- 5- m 017 INN De(ormac*nea Reacaonea Tensions Annexed numerical results. 'SAC„E Mom"n REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 44 / E2 RV411 PILLAR P3a Esquema Dimensions Aooiones ;� ACE REPORT CALCULATION (REDSPORT PRO PADEL COURT) 45 / 62 RV411 (Rojo -> T cain', Gne-> Compree,in: Verb -> Variable) N�lez a•9 mm Mz = O OlS kHm v4.9 mm Mz •e.115 kxm 3 l ME • 0, 99 kxm )3—_ Mz-1,e5 kM1m i Me -1,]9M Mz = 3105 kxm Deformaciones Reacciones Annexed numerical results. Conen[es Mementos (Rojo, Traccidn; ❑ris, Compri ibn; Verde, Variable) C!f TenSlones ACaE REPORT CALCULATION (REDSPORT PRO PADEL COURT) 46 / 6Z RV4 A ACE 6. TECHNOLOGICAL PROPERTIES OF THE MATERIALS AND DURABILITY MATERIALS Steel types Construction steels are classified according to the manufacturing process and are regulated in Euronorms: 1) Products Hot -rolled steel, as defined in EN 10025 NE. 2) Hollow Products for construction, hot finished WE EN 10210) and cold formed (NNE EN 10219). 3) Steel flat products coated in continuous organic matter (prepainted) UNE EN 10169 and NNE EN 10326. Steel products In addition to profiles and sheets considered in paragraphs 28.1 to 28.4 of the EAE Instruction, withc correspond to standard series, they may he used in the construction of structures profiles and non-standard sheet, whether special open forms, or variants of standard series, provided that the following conditions are met: Protiles and sheets are made with steel soecitied in Article Zl: Tablet 27. Aceros equivalentes a los tipos de acero expresados TWO DE ACERO NORMA UNE-EN Aceros no aleados laminados an caliente. UNE-EN 10025-2 Aceros soldables de grano fino, en la UNE-EN 10025-3 condition de normalizado. Aceros soldables de grano lino, lamiinados UNE-EN 10025-4 termomecanicamente. Aceros con resistencia mejorada a la LINE -EN 10025-5 corrosion atmosferica (aceros patinables). Aceros de alto limite elastico, an la LINE -EN 10025-6:2007+A1 condici6n de templado y revenido. Aceros con resistencia mejorada a la UNE-EN 10164 deformaci6n en la direction perpendicular a la superficie del producto. UNE-EN 10025-1 REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 47 / E2 RV4 I I '►ACE The same instruction allows the use of non-standard profiles and plates, with conditions: 28.6. Perfiles y chapas no normalizados Ademas de los perfiles y chapas considerados an los apartados 28.1 a 28.4, qua corresponden a series normalizadas, podran emplearse en la construcci6n de estructuras perfiles y chapas no normalizados, bien seen de formas abiertas especiales, o variantes de series normalizadas, siempre que se cumplan las siguientes condiciones: — Los perfiles y chapas estan elaborados con aceros especificados en el Articulo 27. — El fabricante garantiza las dimensiones y tolerancias, dimensionales y de forma, de los perfiles y chapas. — El fabricante suministra los valores de los datos de la secci6n necesarios para at proyecto (area de la secci6n transversal, momentos de inercia, m6dulos resistentes, radios de giro, posici6n del centro de de gravedad). It is satisfied that the manufacturer guarantees the dimensions and tolerances, dimensions and shape of the profiles and sheets. The manufacturer supplies the values of the data needed parael project section (cross -sectional area, moments of inertia, moduli, turning radius, center of gravity). Joints systems The joints systems contemplateds by Steel Instruction are constituted by screws, nuts and washers for bolted connections, and filler material for welded joints. The screws used for the purposes of this Instruction in joints of steel are listed in Table 29.2.a, with the specifications yield strength (fyh), tensile strength (fuh). Tipo Tomillos ordinanos Tomillos de alta resistencia Grado 4.6 5.6 6.8 8.8 10.9 fyp 240 300 480 640 900 fW 400 500 600 800 1000 Protection systems Instruction includes types of paint and coating systems that can he used for protection of steel structures, as well as the technical requirements to he met, according to the required durability of the protective paint. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 48 / E2 RV411 DURABILITY Durability of steel structures ACreE The durability of a steel structure is its ability to withstand, during for which it has been projected useful life, the physical and chemical conditions to which it is exposed, and could even cause its degradation as a result of different effects to loads and stresses considered in the structural analysis. A durable structure must he achieved with a strategy to consider all possible degradation factors and act accordingly on each of the phases of Project the execution, and the use of the structure. A correct strategy for durability should be aware that in a structure may have different structural elements subjected to different types of environment. Both concrete Instruction EHE as EAE have the some durability table: Table 5 Vida util nominal de Ides diferentes tipos de estructurattl Tire do Vida minimum. Estructuras de caracter temporal or Wil nominal Entre 3 y 10 enos Elementos reemplazables quo no forman parts de Is astructura prm- cipal (par all barandillas, apoyos de Weeded Entre 10 y 25 enos Edificios to instalociones) agdcolas o industriales y obras marifimas Entre 15 y 50 Sam Edificios de is treat u oficinas y estructuras de ingenieda civil (ex- cepto abuse marNmas) de repercusifin Stondmica Baja o media S0 altos Edifisios de canister monumental o de importance, especial 1000605 Pueraes y Was estructuras de ingenieria civil de repercusifin econfi- mica alta 100 anos T.... 5.1. V,...dr...a..r .. r............................ m T... ...... a.... V...... EL.....<., d......... <.m..<..m E... 3. 10 Ei.................r.,......r....r.. a.... •............ E.., 10. ...�<.....a. r (.. y.................., ...... 25... E...... (....<.r.......) .u....r.............. ...... E... 15. E..... ....... .., ...,... ., ..... ... -r ...0 .. E...... d...................r. d. r...,....r.......r. 1ao.... P.,..<„ .. r...—<......... ....... .. 10 ........... 100..... 'n No,& as esaumera esm consumida no, Ailarantes pal padre doldrums Para sales (arms daemmas valores de oti ......................... r....................,.-,.......... .... ................., "do aril. siempm an notion del ripe y rardemostirzs ds laconstmcciun tle laz mismas. ................_...... ......... .>......... ..... ...... . 01 En na ler del pmassme pdsim tle le us levposicidn temporal, etc.l. En dings, rem se maiWraRn coma esmxW® mr. ... I „ .a ....._— —I_ r. ._,a ,_ ...... der,.e, temporal aquellas esauem., de vide util..,.I superior a 10 anw. .,„.,.._... ... ......... in ..— A useful life of a IB years is required for outdoor sports facilities. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 49 / 62 RV4 '►ACE 7. SIZING AND CHECKING DATA MATERIALS FOR THE PROJECT Project data of structural steel Its considered as resistance of steel hUOM value, being fyk the yield characteristic, and OM the partial factor for the resistance, corresponding to the failure mode considerated. This expression is valid for traction as for compression. The "EA95", replaced by the EAE (2011), defined in its tables, the allowed profiles: Tabla 2.A2.3.- Derfiles huecos mctangulares i = Radio estenur Je reJinrdeo- n = PerLmetro A = Area de la seccion S,i = Mouieuto estatico de inedia section, respecto al ele X. 4= Moroento de nutria de la secciba respmo al eje X , r Y W. = 2 k d N,16ch to rrsection sisteitte de la resperto a X t = (1 : A)i" Radio de eim de Is section. revnto al X e Sr= \4onieuto eststico de india section, respecto al eje Y R e 4=MonwWo de ntnria de Is section mixcto al ete Y . Wy = 21, d Nfodudo reststente de to sectton, reWcto a Y ir= (1,: A)t'- Radio de vim de to section, respecto at Y t, = A46dulo de torsi n de la seeciou ULTIMATE LIMIT STATES Equilibrium limit state It is found that under the assumption of worst case load, equilibrium limits structur are not equilibrium exceeded (overturning, sliding, etc.), using the methods of rational mechanics and considering the actual conditions of the underpinnings. Is fulfilled: Ed,estab. <Ed,desestab Strength limit state (sections) They are considered: the axial tensile, shear, torsion and efforts interaction. State instability limit Are considered: the elements under compression, flexural elements, the elements subjected to compression and bending, the flat elements longitudinally stiffened, the shear buckling of the web, the flexion -compression interactions, dentweb induced by the compressed Danger and the stiffeners. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 50 / 62 RV411 LIMIT STATES State limit deformations 1 AC„E The limit state of deformation is satisfied if the movements (displacements or drafts) in the structure or structural elements are less than maximum limit values. The limit check state of deformation will he done in all cases in which deformations may affect the aesthetics, functionality or durability of the structure or the elements supported by it. FATIGUE LIMIT STATE Fatigue limit state It is called fatigue damage in a structural element to the initiation and / or propagation of cracks caused by repeated stress variation. The method of SN curves used this Instruction is based on fatigue tests on samples that reproduce the details of construction in real size and include the effect of geometric imperfections and residual stresses due to manufacturing and assembly of the structure (example, welding cords made in accordance with good practice). STEEL STRUCTURES IN FRONT OF THE FIRE This chapter sets out the criteria to be applied in the project of building steel structures to verify their hearing capacity under the action of a fire, considered an "accidental situation' for the purposes of structural safety. STEEL STRUCTURES IN FRONT OF THE EARTHQUAKE In this chapter some particular aspects of the design and execution of steel structures against seismic actions that complement the general provisions contained in Earthquake Resistant Construction Standard NOSE-02, approved by Royal Decree 997/2002 of 27 relate September. The Chapter is especially directed to the project and implementation of those parts of the structures that form the system resistant to seismic activity. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 51 / 62 RV4 '►ACE 8. JOINTS AND STRUCTURAL ELEMENTS JOINTS All joints of a structure must be designed so that it might achieve the some the projected level of safety, good service performance and durability, and must be able to withstand at least the efforts planned for them in the overall analysis of the structure . Determining efforts The disposition of each union will be studied so that, with the fewest possible elements, existing efforts are transmitted in the most correct conditions that can be achieved and so as to minimize side efforts. Classification of joints subjected to bending moment In this section we study these joints between two parts, such as beam -support junctions or joint beams, which are primarily designed to transmit bending moments. Screw connections They used on site by the advantages offered to welded: speed and ease of execution and quality assurance.. No screws grade lower than 4.6 (ordinary screw) or higher level to 10.9 (screw high resistance) without experimental demonstration that are suitable forjoining on the expected use are used. The screws function as the efforts that are being requested (traction and shear). The high strength (covereds by the standard) are prestressed by a torque, so that the joining surfaces are subjected to a pressure which causes, by friction between itself, can withstand and transmit perpendicular efforts to the axis of the screws. REPORT CALCULATION (REDSPORT PRO PADEL COURT) 52 / 62 RV411 DACE Welded joints Welded joints covered by this Instruction must he executed in accordance with Article 77 of the EAE. The steels to he joined by welding and filler materials for welding shall conform to the provisions of paragraph 29.5 of the same instruction: 29.5. Material de aportacion El material de aportacion utilizable para la realization de soldaduras (alambres, hilos y electrodos) debera ser apropiado para el proceso de soldeo, teniendo en cuenta el material a soldar y el procedimiento de soldeo; ademas debera tener unas caracteristicas mecanicas, en tdrminos de limite elastico, resistencia a traction, deformation bajo carga maxima y resiliencia, no inferiores a las correspondientes del material de base que constituye los perfiles o chapas que se pretende soldar. En el caso de solder acero con resistencia mejorada a la corrosion atmosf6rica, el material de aportacion debera tener una resistencia a la corrosion equivalente a la del metal base, salvo que permita otra cosa el pliego de prescripciones t6cnicas particulares del proyecto. In all cases, the filler material must have mechanical characteristics, elastic limit and tensile strength not lower than the base metal. The welds covered by this Instruction shall he made on parts of at least 4 Pont thick, the exceptions are justified. The Technical Cade does not include the weld throst.lt can he used as the required reference in Annex A of the NBE EA 95 or in the EAE: EA95: Tabla 5.2.3.A Valores limites de la garganta de una soldadura en fingulo en una union de fuema. Espesor de to pie= mm Garpnts a Vdor mirimg rnm Vdgr atinimo mm 4.0-4.2 '.5 2.5 4.3-4.9 3.0 2.5 5.0-5.6 3.5 2.5 5.7-6.3 4.0 2.5 6.4-7.0 4.5 2.5 REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 53 / 62 RV411 EA[ (2011) 59.3.2. 6..... a....P.- 5.1.,. 1..i, ..,t. ,.,— .... ..v. 1.......... 1.a t...�... ,...I ... , ....ma d. ..p..i... 0.7 Oa.m.a........ de. pi.,.am e. ..�9... .�,.�e. ......1: a..... Ei ..P...... e..ate ........... .a ..t... 59.7, a..e.e a �.. . 3 mm a.a.. ,.....a..a .a... . 10 mm ..., ...., a. . 4,5 emm ...m. .. ....�t. ..P . ..... .•20 mm ........,, a� ia.......�5,6 mm ...... ,. as ,.... —..... me... 20 mm ..., P.,.., a m..... . .—M m.t..a P... emt mb Pi. m., Pa ne..eae. a. ..1.. ...... ei .........o "I laze, a .ni, aee upa i., ei ...ia .ai .a ...t.e P1...... , .a ae ...... ...e.. .e —... e..cu ea. .. c.nei.e,e ei ..... , a uiveiameCEV eel mete nei .e .e ee, ie AU Welded joints are classified as: butt welds, fillet welds and special welding. A stopper are those in which the filler material penetrates the entire thickness of parts to be joined, with the corresponding edge preparation, to ensure less than the resistance of the weldment. In the present case are fillet welds, in which the filler material fills the angle between parts to he joined, with a partial penetration of the thickness of the pieces. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 54 / 62 RV411 Connections to the fundation IN The support structure should materialize, as perfectly as possible, the conditions provided for in the calculation. The support should he designed so that: - Can transmit to the foundation's efforts in the calculation provided without causing stresses that it can not resist properly. - Let anticipated movements in calculations without creating unforeseen stresses on them. - Can he accomplished without difficulty inspection and maintenance thereof. The union of a support to its foundation by a base plate may he considered as perfect embedding or rigid connection if it meets the conditions set out in paragraph 65.2.5. If it is not desired that there hands at the and of the support articulated joint must be interleaved a holt or something similar between the plate and the support. In the present case, it can be considered a rigid screw connection, consisting of a rigid plate welded to the pillar in the workshop and holted to the foundation on site. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 55 / 62 RV411 GLASS DACE The thermally tempered glass is treated to increase resistance. For glasses regularly subjected to temperature changes would apply the treatment called "heatsoak" (thermal stabilization). Mechanical shock resistance The thermally tempered glass has a resistance more than three times higher than annealed glass. Flexural strength The thermally tempered glass has a minimum of 129 N / mm2 (the annealed glass it is having a characteristic flexural strength of 45 N/mm2) Torsional stiffness There are circumstances that curves the glass and produces a torque. The same tempered glass withstands a torque of up to five times higher than normal like. Thermal shock resistance Tempered glass withstands a difference of 220 ° C, while a common glass breaks with a difference of 60 ° C. Fragmentation This is one of the most important properties of tempered glass. Any other glass, plain or rolling, to reach their limit of endurance, glass breaks into sharp pieces. Faced with this problem tempered glass, to reach their breaking point, it disintegrates into small pieces without sharp edges and lowweight. Specific regulations for tempered glass We emphasize two regulations for this type of crystals: 1) IN 12000: Building Glass - Testing pendulum test method impactoy classification of flat glass (2902) 2) IN 350: Glass building - Safety glass -Testing and classification of resistance against manual attack (1999). REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 56 / 62 RV4 9. EXECUTION WORKSHOP MANUFACTURE Workshop manufacture A«AC E This chapter, and the scope of this Instruction, sets minimum execution requirements appropriate to the intended level of safety, which provide the design criteria of this Instruction. In general this Chapter applies to the entire structure under predominantly static loads. For structures with fatigue are required higher levels of execution. Mechanical fastening elements The execution of joints by screws must take into account the specific design features for which the requirements set out in Article 58 and the materials that are contained in Article 29. Therefore diameters of holes, mutual separations and borders, tight systems and surface state among other data, must be included in the technical Specification and is recommended also included in the plans. Welding The welding must be executed in accordance with a method according to UNE-EN ISO 15609-1. The method to qualify this procedure will be either established in different parts of UNE-EN ISO 15609-1, unless the Technical Specification specifies a different method which in any case must detail. If the Technical Specifications so indicates, it will proceed to the qualification of the welding process through preliminary tests according to UNE-EN ISO 15614-1. REPORT CALCULATION (REOSPORT PRO PAREL COURT) 57 / E2 RV411 EXECUTION IN SITE Assembly 1%ACreE The pre- or post -installation activities must also have a compatible security plan, whatever its nature (excavation, concrete, finishing, covering, flooring, facilities, etc.). The installation program is developed by builder it must be approved by the project management before the start of work. However the Technical Specification shall include a preliminary assembly method suitable to the strength characteristics of the structure in its different phases which will guide the builder to draw up the final assembly program. Protection treatment It shall apply to the structures worked in the workshop and worked on site. The technical specifications detailed requirements should define the system of corrosion protection and additional requirements for service conditions in accordance with the useful life of the structure (see section 5.0 and the maintenance plan (see Article 94), having into account the level of atmospheric corrosion and exposure of the different components. Environments are classified according to different categories of corrosion according to guide paint systems EN ISO 12944-5 (2007) and EN 1090-2 Annex F Categoria de Exterior Interior corrosion c1 Edifiaos con calefacci6n y Muy baja - atm6sfems limpias. C2 Atm6sferas con bajos niveles Edifiaos sin calefacadn con Baja de contaminaci6n. Areas rurales. posibles condensaciones. Atm6sferas urbanas e C3 industriales, con moderada Naves de fabricad6n con elevada Media den bale Areascontacosteras Areas costeras con baja humedad y con alguna salinitlad. contaminaci6n. C4 Areas intlustriales y areas Alta costeras con moderada Industrias qulmicas y pisanas. salinicad. C54 Areas intlustriales con Edifiaos o areas con Muy Alta (industrial) elevada humedad y con condensaaones casi pennanentes atm6sfera a resiva. y contaminaa6n elevada. C5-M Areas costeras y maritimas Edifiaos o areas con Muy Alto (maritime) con elevada salinidad. condenseciones pennanen[es y contaminaci6n elevada. the required treatment tar an average corrosion, whose durability, according to Article M2 is Se establecen tres grados de durabilidad de los sistemas de pintura: - Durabilidad baja (L): de 2 a 5 anos. - Durabilidad media (M): de 5 a 15 anos. - Durabilidad alta (H): mas de 15 anos. The design in terms of type of elements and details of joints should avoid areas where humidity and dirt can he deposited both interior elements as those directly exposed to the outside. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 56 / 62 RV411 TOLERANCES Tolerances The tolerances are classified as: - Normal tolerances - Special tolerances DACE The normal tolerances are specified in this Instruction. The indicated deviations should not be exceeded under any circumstances because compromise the strength and stability of the structure; They are considered essential tolerances. The normal tolerances are listed in the tables of Chapter XVIII of the EAE Instruction. It should be understood that these are requirements for final acceptance of the structure; therefore, the prefabricated components that are mounted in site has their manufacturing tolerances wich are subordinate to the final check of the executed structure. EN 1090-2 9II and Annex 0 deal with the geometric tolerances, distinguishing the essential tolerances (necessary to ensure the strength and stability of the structure) and functional tolerances (necessary to ensure correct assembly, appearance and functionality structure). For special tolerances, called additional tolerances of Annex 0 of EN 1090-2, there are two levels or classes for establishing manufacturing and assembly. REPORT CALCULATION (REOSPORT PRO PAOEL COURT) 59 / 62 RV4 10. CONTROL GENERAL BASIS OF CONTROL General control criteria The project management in the name of the property, is obliged to check compliance with the provisions of the project, the products received in the work and, in particular, those who join it permanently. When materials and products have CE marking according to Directive 89/106 / EEC, can be checked compliance by checking that the values declared in the documents accompanying the EC marking allow compliance with the specifications set out in the Project. Conditions for the conformity of the structure La ejecuci6n de la estructura se Ilevara a cabo segOn el proyecto y las modificaciones autorizadas y documentadas por la direccion facultativa. The documentation that is required by regulation will be prepared during the execution of the structure, and it and it will include, without prejudice to establish other regulations, the documentation referred to in the articles of this code. In all activities related to the control reception, you may be present a representative of the responsible for the activity or controlled product (author of the project, the material or product supplier, builder, etc.). For sampling, each representative will get a copy of the corresponding act. When any incident occurs in receiving test results derived from non -conforming, the supplier or, if applicable, the builder, may request a copy of the lab report control. Documentation and traceability All activities related to the control established by this Instruction documented in the appropriate records, physical or electronic, which must provide documentary evidence of all tests, test reports and parts inspection have been carried out, must be included, once the work is complete, in the final documentation. Guarantee levels and quality marks The conformity of products with regard to the requirements defined by this Instruction, required to meet a sufficient level of assurance a set of specifications. On a voluntary basis, can provide a guarantee level incorporation of systems (such as quality marks) that inspections and tests, that their quality systems and requirements placed on such superior guarantee systems. above the minimum required by the support, through appropriate audits, their production controls meet the REPORT CALCULATION (REOSPORT PRO PAREL COURT) NU / E RV4 QUALITY CONTROL PROJECT Project control A«AC_E In the field of application of this Instruction, you can use construction products that you can use products that are manufactured and sold legally in the Member States of the European Union and the signatories to the Agreement on the European Economic Area as always ensuring the safety and use which are intended to have a level equivalent to that required by this Code. This level of equivalence is credited as provided in paragraph 4.2 or, where appropriate, in Article 16 of Directive 89/106 / EEC of 21 December 1988 on the approximation of laws regulations and administrative provisions of the Member States relating to construction products. CONTROL OF CONFORMITY OF PRODUCTS Overview The project management in the name of the property, is obliged to check compliance with the provisions of the project, the products received in the work and, in particular, those who join it permanently. General criteria for the verification of the products conformity. When materials and products have CE marking according to Directive 89/106 / EEC, can be checked compliance through documentary verification that the values declared in the documents accompanying the EC marking allow compliance with the specifications defined in project. Specific criteria for checking the products conformity The conformity of steel products as set out in the project will be checked during reception at work and should include verification of the mechanical and geometrical characteristics. REPORT CALCULATION (REOSPORT PRO PAREL COURT) EI / E2 RV4 11. MAINTENANCE A«AC E The steel corrosion processes are further enhanced if they occur in areas of difficult access or storage of water or other materials. To mitigate, or prevent, as far as this is possible, a worsening structural or functional consequences is appropriate, in the design phase, the rules of good practice are respected. It is desirable that there are no areas inaccessible or difficult to access in order to repaint properly. Thus, it should be left hooks in the structure, pins or other fasteners that allow the installation of scaffolding or other means of access to undertake maintenance during the service of the work. It is desirable that all surfaces of the structure that have some corrosion protection treatment are visible and accessible with means which have sufficient security. In addition, there must be adequate space for the operator to work in conditions of safety. EMMA LEACH COSP, Architect XAVIER MATEU PALAU, Architect REPORT CALCULATION (REOSPORT PRO PAREL COURT) 62 / 62