Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
SDP200000065 Calculations Final Site Plan and Comps. 2000-05-24
0 Divide the Site into Drainage Areas For the purposes of this calculation procedure, the drainage area within the boundaries of the development site will be the unit of analysis. BMP requirements are for on -site runoff generated by the project. However, in some cases, pollutant removal credits can be obtained by treating off -site runoff if the project drainage area(s) include off -site land. The Stormwater/BMP Plan should show the: (1) the site boundary, (2) on -site drainage areas, and (3) off -site drainage areas (if feasible). For projects adjacent to large streams, it is not necessary to include all -off -site areas within that watershed, just the drainage areas that comprise the development` site itself (for instance, if the project is adjacent to the Rivanna River, include all sub -drainages within the site, but not the entire Rivanna watershed) . For small sites, the entire project area may be within one drainage area. Calculate the area in acres for each drainage area, and label each drainage area on the plan. It will be necessary to fill out the following series of worksheets for each drainage area. Drainage Area 1: 7.72 acres (on -site); acres (off -site); 7. 72 total acres Drainage Area 2: acres (on -site); acres (off -site); total acres Drainage Area 3: acres (on -site); acres (off -site); total acres Drainage Area 4: acres (on -site); acres (off -site); total acres Drainage Area 5: acres (on -site); acres (off -site); total acres Drainage Area 6: acres (on -site); acres (off -site); total acres Drainage Area 7: acres (on -site); acres (off -site); total acres TOTAL (ON -SITE) AREA = 7.72 acres .0 LJ Sl J. 6'1CqJ a 1\,e-, a @ Calculate -Pre-Development Impervious Cover -- I(pre) Use the following worksheet to calculate I(pre) using actual site information. As a unit of analysis, use each drainage area (on -site acres only) identified in Worksheet 1. If the project is to be done in phases, include only the active phase(s) . DRAINAGE AREA # ON -SITE AREA = 77Z ACRES (on -site drainage area size) No. Roads: length (ft) x width (ft) for all roads = ► Driveways: average length (ft) x average width (ft) x number of driveways = ► Parking Lots: square footage = ► Structures (including houses) : sum of actual square footage for all structures, OR average house square footage x number of houses = ► Actively -grazed pasture (livestock present), Yards & areas of cultivated turfs: actual square footage of areas x 0.08, OR average yard area x number of yards x 0.08 = ► Active crop land: square footage x 0.25 = ► Other Impervious Areas = square feet square feet square feet square feet square feet _ square feet square feet TOTAL EQUIVALENT IMPERVIOUS COVER = 0 square feet (sum of all the above values) I(pre) = Total Equivalent Impervious Cover (sq ft)/43560 sq ft per acre/on-site drainage area in acres x 100 I(pre) = O % I One may assume that areas of yard and cultivated turf and not impervious at all. However, in most cases, these areas have been compacted by equipment and do not have the same pervious and/or water -holding qualities as undisturbed areas, such as forest or meadow. In addition, fertilizer and pesticide applications to cultivated areas is a concern for post -development loads. Literature values attribute an equivalent impervious value of 8% to mowed lawns, moderately -grazed pasture, and golf courses. Therefore, for the purposes of the calculation, a multiplier of 0.08 has been used. @ Calculate Pre -Development Phosphorus Load -- L(pre) DRAINAGE AREA # ON -SITE AREA = 7.72 ACRES (on -site drainage area size) L(pre) = Pre -Development Phosphorus Load (pounds/year) I(pre) = Pre -Development Equivalent Impervious Cover (%) A = On -Site Drainage Area (acres) Use the following table to calculate L(pre) based on the water resources area the project is within. Yt.:-y]y�,}y�j]/► T Development Area, where I(pre) is 1.41 x A less than or equal to 20 % Development Area, where I(pre) is 6.14 x [0.05 + (0.009)(Ipre)] x A greater than 20 % Water Supply Protection Area, no 0.15 x A existing impervious cover ( do not count existing equivalent impervious cover from pasture or crop land) Water Supply Protection Area, site 3.07 x [0.05 + (0.009)(Ipre)] x A with existing impervious cover Other Rural Land, no existing 0.21 x A impervious cover (not counting pasture or crop land equivalent impervious cover) Other Rural Land, site with existing 3.51 x [0.05 + (0.009)(Ipre)] x A impervious cover L(pre) = A 9 pounds per year (annual loading) 0 Calculate Post -Development Ultimate Impervious Cover -- I(post) DRAINAGE AREA # ON -SITE AREA = 772 ACRES (on -site drainage area size) Use the following worksheet to calculate I(post) using assumed figures for build - out of the project, including roads, houses, driveways, yards, etc. ► Roads: length (ft) x width (ft) for all roads = ► Driveways: average length (ft) x average width (ft) x number of driveways = ► Parking Lots: square footage = ► Structures (including houses): sum of actual square footage for all structures, OR average house square footage x number of houses = ► Yards & areas of cultivated turf, areas to remain in active pasture2: actual square footage of areas x 0.08, OR assumed average yard area in a subdivision x number of yards x 0.08 ► Areas to remain in active crop land: square footage x 0.25 = ► Other Impervious Areas TOTAL EQUIVALENT IMPERVIOUS COVER = (sum of all the above values) square feet 4YN� square feet square feet 28M square feet square feet square feet 308 square feet ' 19 square feet I(post) = Total Equivalent Impervious Cover (sq ft)/43560 sq ft per acre/on-site drainage area in acres I(post) = -2 2 % 2 One may assume that areas of yard and cultivated turf and not impervious at all. However, in most cases, these areas have been compacted by equipment and do not have the same pervious and/or water -holding qualities as undisturbed areas, such as forest or meadow. In addition, fertilizer and pesticide applications to cultivated areas is a concern for post -development loads. Literature values attribute an equivalent impervious value of 8% to mowed lawns, moderately -grazed pasture, and golf courses. TherefQre, for the purposes of the calculation, a multiplier of 0.08 has been used. 0 Calculate Post -Development Phosphorus Load -- L(post) DRAINAGE AREA # ON -SITE AREA = 7- 72 ACRES (on -site drainage area size) L(post) = Pre -Development Phosphorus Load (pounds/year) I(post) = Pre -Development Equivalent Impervious Cover (%) A = On -Site Drainage Area (acres) Use the following table to calculate L(post) based on the water resources area the project is within. L(post) = A 7 pounds per year (annual loading) O Calculate Pollutant Removal Requirement DRAINAGE AREA # Condition 1: No Existing Impervious Cover (Do Not Count Eauivalwt Impervious Cover From P st r r p Land) RR = (Pollutant) Removal Requirement = L(post) - L(pre) RR = D. & pounds per year %RR = Overall BMP Pollutant Removal Efficiency = RR x 100/L(post) %RR = 6.8 % niin Z.- Adding Imperviousr To SitesWith Existing m i Cover -- Developmetit Areas RR = (Pollutant) Removal Requirement = L(post) - L(pre) x 0.9 RR = pounds per year %RR = Overall BMP Pollutant Removal Efficiency = RR x 100/L(post) %RR = % Condition 3: Adding Impervious Cover To Sites )Yith Existing Uperyious Cover -- Water Supply Protection Area OR Daher Rural Land RR = (Pollutant) Removal Requirement = L(post) - L(pre) x 0.85 RR = pounds per year %RR = Overall BMP Pollutant Removal Efficiency = RR x 100/L(post) %RR = % 0 Select Appropriate BMPs to Meet The Removal Requirement Once the pollutant removal requirement is determined for each drainage area, the next step is the critical step of developing a BMP plan for the overall site. In general, the drainage area analysis will help determine where BMPs should be targeted. However, in weaving together an overall BMP plan, it will be necessary to use flexibility and judgement to develop a balanced plan (for instance, BMPs in some drainage areas may need to compensate for other drainage areas where BMPs are not feasible. Also, treating off -site runoff from developed sites may contribute to pollutant removal credits). The intent of the ordinance is for as much of the site as possible to be covered by a BMP, but, within this overall objective, treating areas of impervious cover are the priority (see Section 19.3-39). This is a good point to think about how BMPs, detention, erosion and sediment control (E&S), and stream buffers will be integrated with the overall development design. For instance, for some projects it will make sense to design detention and BMPs in the same facility or facilities, and to also utilize these facilities for temporary erosion control. That means that the location and design of the facility must function for permanent stormwater management, but must also be functional for erosion control. In most cases, this will mean designing a permanent basin, ensuring that the capacity will meet E&S criteria in the State Handbook, retrofitting the outlet structure for E&S purposes, and then planning to convert the facility into a permanent stormwater basin by cleaning out silt and making any modifications to basin geometry, outlet structures, spillways, etc. An important consideration at this stage is locating these facilities so as to best protect the network of natural stream channels on the site. Alternately, overall design and efficiency may be better served by separating E&S measures from those required for permanent stormwater management. It may be desirable to move BMPs up closer to points where runoff is generated. These considerations, in addition to site topography,- soils, post -development imperviousness' and development design will contribute to the selection of BMPs to meet the pollutant removal requirement. The following table lists various BMPs, their target pollutant removal efficiencies, and notes on the advisability of each for certain conditions. The information in the table is to used as guidelines, as actual site conditions will dictate the BMP plan. The applicant and designer should utilize the opportunity to work with the Engineering Department staff to develop the most appropriate BMP plan for the site. Design guidelines for each type of BMP listed in the table are contained in a subsequent section. Alternative BMPs and non-structural measures (see Section 19.3-37) can be developed in consultation with the Engineering Department. BMP Selection Table NOTE: The Water Quality Volume (WQV) is the volume- of water generated by 0.5 inches of water per impervious acre in the BMP's drainage area. Where off - site runoff is treated by the BMP, pollutant removal credits can be obtained to be used against the overall site BMP requirement. BMPs in series can also be used to boost pollutant removal (for instance, a grassed swale with check dams leading to a basin, or two ponds in series). Appropriate for site with impervious cover up Extended Detention - 30-35 % 2 x WQV held and to 40 % . Can be used in conjunction with released over 12 - 30 detention facility. Land -intensive. hours. Extended Detention - 50 % Appropriate for wide range of impervious as above, plus cover. See other comments above for extended sediment forebay, detention. aquatic bench, and shallow marsh. Wet Pond - 3 x 40-50 % Appropriate for site with impervious' cover up WQV storage as to 40 % . Can be used in conjunction with permanent pool. detention facility. Land -intensive, but can Storage for WQV used as aesthetic/recreational amenity. The above permanent higher pollutant removal applies to designs pool. with forebay and aquatic bench. Wet Pond - 4 x 50-65 % Appropriate for sites with high impervious WQV storage as cover or sites where an amenity is desired. permanent pool. The higher pollutant removal applies to Storage for WQV designs with forebay and aquatic bench. above permanent pool. B:M -..�. T . Wet Pond - Wetland 50-65 % There are a variety of designs that can used System depending on water balance, available space, `and whether the BMP is on-line or off-line with the main stormwater conveyance system. These systems are design -intensive and require care in planning and planting wetlands. Bioretention Area or 50% Appropriate for parking lots and tight sites. Biofilter Very efficient use of space. Can be part of site landscaping. Pocket Wetland 30 % It may be possible to retrofit silt traps to function as small pocket wetlands, or small wetland areas can created where the hydrology does not exist to create a full-scale stormwater wetland. They are appropriate for site up to 40% impervious. Sand Filter 40-65 % Suitable for areas with very high impervious cover and little space available for other types of BMPs. Sand filters are also appropriate for nonpoint source "hot spots," such as gas stations and vehicle service operations. The higher removal efficiency is for the Delaware Sand Filter and similar designs. Grassed Swale 15-20 % Suitable where slope and discharge velocities are appropriate, and where site . imperviousness does not exceed 20 % . The higher removal efficiency is for designs that utilize check dams. In some cases, a grassed swale can be modified to a biofifter by adding an underdrain system. 1�I1°II' t fli]( A.dyisability for Cert•lhl Bile's Porous Pavement 50 % Porous pavement reduces overall site imperviousness, can be used in conjunction with detention, very space efficient. However, these systems are very design and construction -intensive. Adding Additional See notes Sections 19.3-41-46 of the ordinance address Stream Buffer or for minimum stream buffer requirements. The Revegetating particular stream buffer requirement depends on the Existing Buffer; removal water resources area a project is within. The. Protecting Buffers credits. following buffer enhancement measures can with easements or be used to gain pollutant removal credits: deed restrictions. 10% for each 25' of buffer added to minimum requirement. • 25 % for including adjacent critical slopes in buffer, as shown in Open Space Plan. • 20 % for each 50' of buffer revegetated with trees & shrubs (where this vegetation does not currently exist). • 15 % additional credit for protecting buffer with enforceable easement or deed restriction. In each case, it is necessary to protect the buffer from concentrated flow through use of runoff dissipation/spreading measures. y EXTENDED DETENTION a BMP DESIGN 2 • Volume of runoff detained 24 hours equal to 2 * Vr; where Vr = volume of runoff generated by the mean storm over the contribut- ing onsite watershed (offsite area included if credit is taken) . Volume: Vd = 2 * t WQV , , , Vd = Volume of runoff detained Vr = 0 .5 * Rv * A * 3630 G61 Rv = 0.05 + 0 .009 * I 14eitre-fik_ell..013-1-en I = percent impervious cover of the contributing onsite watershed (offsite a. opLik4e p-f ` ' area included if credit is taken) I (expressed as a whole number) �V\ten I�c. k7 A = area of contribuing onsite watershedThn �� (acres) (offsite area included if credit m� 1.zL. "l3-kvf1 : is taken) 1,,/ yi IAAa ctIc0142 , ;30 = conversion factor (cu. ft. /acre-in) Pa\rt 0 .5 * ( 0 . 05 + 0 . 009 * ) * * 3630 -�- — - Vd = 2 * 31 3 G = !-62-16 cu. ft. Detention: Qave = Vd/(T * 3600) Qave = average outflow rate for desired detention time (cfs) • T = detention time (hrs) 3600 = conversion factor (sec/hr) Qave = 62'? /( 24 * 3600) = 007 cfs Ap = Qave/(0 . 6 * V[ 64 .4 * Have] ) Ap = total perforation area (sq. ft. ) Have = 0 .5 (max head-radius of outflow pipe) _ ( ft. ) 24 inch outflow pipe Ap = O.07 /( 0 . 6 * V[64 .4 * /2 1 ) = £00 - sq. ft. 38 N = Ap/Ah N = number of perforations Ah = area of each perforation (sq. ft. ) Perforation Diameter Ah 0 .5 inch 0.0014 0. 75 inch 0. 0031 1. 0 inch 0 . 0055 N = 0.&0% / 9.Ooi = 3 t O/t' inch diameter perforations evenly spaced up the half of the riser opposite the barrel . Perforations shall begin at the facility floor elevation and riser shall be covered with wire mesh or filter fabric and gravel cone (4"-6" E.C. stone) . CONSTRUCTION PLANS SHALL INCLUDE THE FINAL DETAILED BMP DESIGN 39 Type. . . . Vol: Elev-Area Page 1.01 Name. . . . P 10 File. . . . C:\HAESTAD\PPKW\18809\18809.PPW Elevation Planimeter Area Al+A2+sgr(A1*A2) Volume Volume Sum (ft) (sq. in) (sq.ft) (sq.ft) (cu.ft) (cu.ft) 416.00 2647 0 0 0 / 417.00 3527 9229 3076 V 418.00 4465 11960 —3987 419.00 5460 14863 4954 12017 19 420.00 6512 17935 5978 17996 421.00 7622 21179 7060 25055 422.00 8799 24610 8203 33259 423.00 10039 28237 9412 42671 424.00 11318 32016 10672 53343 425.00 12654 35939 11980 65323 426.00 14038 40020 13340 78663 POND VOLUME EQUATIONS * Incremental volume computed by the Conic Method for Reservoir Volumes. Volume = (1/3) * (EL2-EL1) * (Areal + Area2 + sq.rt. (Areal*Area2)) where: EL1, EL2 = Lower and upper elevations of the increment • Areal,Area2, = Areas computed for EL1, EL2, respectively Volume = Incremental volume between EL1 and EL2 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 09:49:31 Date: 05-15-2000 tmp#1 #Units=Elevation, ft ,Area, ft2 , Volume, yd3 , Volume, yd3 # Elev Area Cumml Avg Cumml Conic # ft ft2 yd3 yd3 426 . 0000 14037 . 7942 2916 . 2805 2913 . 4853 425 . 0000 12653 . 9792 2421 . 9884 2419 . 4148 424 . 0000 11318 . 2507 1978 . 0582 1975 . 7145 423 . 0000 10039 . 2443 1582 . 5490 1580 . 4419 422 . 0000 8799 . 0429 1233 . 6919 1231 . 8370 421 . 0000 7621 . 9271 929 . 5998 928 . 0057 420 . 0000 6512 . 3350 667 . 8542 666 . 5294 419 . 0000 5460 . 1248 446 . 1420 445 . 1032 418 . 0000 4465 . 2967 262 . 3379 261 . 6076 417 . 0000 3527 . 0027 114 . 3324 113 . 9432 416 . 0000 2646 . 9456 0 . 0000 0 . 0000 _ .so 4 z 111J:nr. 4,,,,Co. 6-; per jm p GGrt)t 2/l 1= /;4 ,pQr .ihP GGe's WQV= (7446-04.1) C T2) 62 ps-,o 'Z3oyd s 4L/7 82 - �Z'76M Page 1 DA: Basin C-factor Area Grass 0.47 8.99 4.2253 Pavement 0.90 1.15 1.035 Roof 0.90 0.66 0.594 Area Total C-factor 10.8 0.54 Tc: Overland: Length = 200 ft Slope= 10.0 % c-factor= 0.54 tc= 6.0 minutes Concentrated: Length = 314 ft H = 50 ft 1.4 minutes Pipe Flow 6.7 minutes Tc= 14.1 minutes 12= 3.98 Q2= 23.3 cfs Ito= 5.38 Q10= 31.5 cfs 125= 5.98 Q25= 35.0 cfs 150= 8.26 Q50= 48.3 cfs 1100= 9.23 Q1oo= 54.0 cfs Table of Contents i Table of Contents ********************** TC. CALCULATIONS ********************* DEVELOPED TC. . . . Tc Calcs 1.01 *********************** POND VOLUMES *********************** BASIN 1 Vol: Planimeter 2.01 ******************** OUTLET STRUCTURES ********************* PR 10 Outlet Input Data 3.01 Individual Outlet Curves 3.04 Composite Rating Curve 3.07 *********************** POND ROUTING *********************** BASIN. IN. 100yr Node: Pond Inflow Summary 4.01 BASIN IN 10yr Node: Pond Inflow Summary 4.03 BASIN IN 25yr Node: Pond Inflow Summary 4.05 BASIN IN 2yr Node: Pond Inflow Summary 4.07 BASIN OUT 100yr Pond Routing Summary 4.09 BASIN OUT 10yr Pond, Routing, Summary 4.10 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Table of Contents ii Table of Contents (continued) BASIN OUT 25yr Pond Routing Summary 4.11 BASIN OUT 2yr Pond Routing, Summary 4.12 ****************** RATIONAL METHOD CALCS ******************* DEVELOPED 100yr Mod. Rational Graph 5.01 DEVELOPED 10yr Mod. Rational Graph 5.02 DEVELOPED 25yr Mod. Rational Graph 5.03 DEVELOPED 2yr Mod. Rational Graph 5.04 DEVELOPED CA. . . . C and Area 5.05 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 l Type. . . . Tc Calcs Page 1.01 Name. . . . DEVELOPED TC File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW TIME OF CONCENTRATION CALCULATOR Segment #1: Tc: User Defined Description: Overall Site Segment #1 Time: 15.00 min Total Tc: 15.00 min S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Tc Calcs Page 1.02 Name. . . . DEVELOPED TC File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Tc Equations used. . . ___= User Defined Tc = Value entered by user Where: Tc = Time of concentration S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Vol: Planimeter Page 2.01 Name. . . . BASIN 1 File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW POND VOLUME CALCULATIONS Planimeter scale: 1.00 ft/in Elevation Planimeter Area Al+A2+sgr(A1*A2) Volume Volume Sum (ft) (sq. in) (acres) (acres) (cu.ft) (cu.ft) 416.00 2647.000 .0608 .0000 0 0 417.00 3527.000 .0810 .2119 3076 3076 418.00 4465.000 .1025 .2746 3987 7063 419.00 5460.000 .1253 .3412 4954 12017 420.00 6512.000 .1495 .4117 5978 17996 421.00 7622.000 .1750 .4862 7060 25055 422.00 8799.000 .2020 .5650 B203 33259 423.00 10039.000 .2305 .6482 9412 42671 424.00 11318.000 .2598 .7350 10672 53343 425.00 12654.000 .2905 .8251 11980 65323 426.00 14038.000 .3223 .9187 13340 78663 POND VOLUME EQUATIONS * Incremental volume computed by the Conic Method for Reservoir Volumes. Volume = (1/3) * (EL2-EL1) * (Areal + Area2 + sq.rt. (Areal*Area2)) where: EL1, EL2 = Lower and upper elevations of the increment Areal,Area2 = Areas computed for EL1, EL2, respectively Volume = Incremental volume between EL1 and EL2 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Outlet Input Data Page 3.01 Name. . . . PR 10 File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW REQUESTED POND WS ELEVATIONS: Min. Elev.= 416.00 ft Increment = 1.00 ft Max. Elev.= 425.60 ft ********************************************** OUTLET CONNECTIVITY ********************************************** ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to Upstream) <---> Forward and Reverse Both Allowed Structure No. Outfall El, ft E2, ft Stand Pipe 2 ---> 3 419.'500 425.600 Orifice-Circular 1 ---> 3 417.820 425.600 Culvert-Circular 3 ---> TW 416.000 425.600 TW SETUP, DS Channel S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Outlet Input Data Page 3.02 Name. . . . PR 10 File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW OUTLET STRUCTURE INPUT DATA Structure ID = 2 Structure Type = Stand Pipe # of Openings = 1 Invert Elev. = 419.5,0 ft v.-- Diameter = 3.0000 ft Iv-- Orifice Area = 7.0686 sq.ft Orifice Coeff. = .670 Weir Length = 9.42 ft Weir Coeff. = 3.330 K, Submerged = .000 K, Reverse = 1.000 Kb,Barrel = .000000 (per ft of full flow) Barrel Length = .00 ft Mannings n = .0000 Structure ID = 1 Structure Type = Orifice-Circular # of Openings = 6 Invert Elev. = 417.82 ft ✓ Diameter = .5000 ft ✓ Orifice Coeff. = .670 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Outlet Input Data Page 3.03 Name. . . . PR 10 File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW OUTLET STRUCTURE INPUT DATA Structure ID = 3 Structure Type = Culvert-Circular No. Barrels = 1 Barrel Diameter = 2.0000 ft - Upstream Invert = 416.00 ft y' Dnstream Invert = 413.00 ft ✓ Horiz. Length = 95.00 ft Barrel Length = 95.05 ft Barrel Slope = .03158 ft/ft OUTLET CONTROL DATA. . . Mannings n = .0130 Ke = .5000 (forward entrance loss) Kb = .012411 (per ft of full flow) Kr = .5000 (reverse entrance loss) HW Convergence = , .001 +/- ft INLET CONTROL DATA. . . Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.144 T2 ratio (HW/D) = 1.291 Slope Factor = - .500 Calc inlet only = Yes Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2. . . At T1 Elev = 418.29 ft ---> Flow = 15.55 cfs At T2 Elev = 418.58 ft ---> Flow = 17.77 cfs Structure ID = TW Structure Type = TW SETUP, DS Channel FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES. . . Maximum Iterations= 30 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .10 cfs Max. Q tolerance = .10 cfs S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Individual Outlet Curves Page 3.04 Name. . . . PR 10 File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW RATING TABLE FOR ONE OUTLET TYPE Structure ID = 2 (Stand Pipe) Upstream ID = (Pond Water Surface) DNstream ID = 3 (Culvert-Circular) Pond WS. Device (into) Converge Next DS HGL Q SUM DS Chan. TW Elev. Q HW HGL DS HGL DS HGL Error Error TW Error ft cfs ft ft ft +/-ft +/-cfs ft +/-ft 416.00 .00 . . . . . . . . . . . . . . . Free Outfall WS below an invert; no flow. 417.00 .00 . . . . . . . . . . . . . . . Free Outfall WS below an invert; no flow. 417.82 .00 . . . . . . . . . . . . . . . Free Outfall WS below an invert; no flow. 418.00 .00 . . . . . . . . : . . . . . . Free Outfall WS below an invert; no flow. 419.00 .00 . . . . . . . . . . . . . . . Free Outfall WS below an invert; no flow. 419.50 .00 . . . . . . . . . . . . . . . Free Outfall WS below an invert; no flow. 420.00 11.10 420.00 Free 418.67 .000 .000 Free Outfall Weir : H =.50 421.00 30.26 421.00 421.00 421.00 .000 .000 Free Outfall DS HGL+Loss > crest: Flow set to Downstream outlet. 422.00 34.11 422.00 422.00 422.00 .000 .000 Free Outfall DS HGL+Loss > crest: Flow set to Downstream outlet. 423.00 37.57 423.00 423.00 423.00 .000 .000 Free Outfall DS HGL+Loss > crest: Flow set to Downstream outlet. 424.00 40.73 424.00 424.00 424.00 .000 .000 Free Outfall DS HGL+Loss > crest: Flow set to Downstream outlet. 425.00 43.67 425.00 425.00 425.00 .000 .000 Free Outfall DS HGL+Loss > crest: Flow set to Downstream outlet. 425.60 45.35 425.60 425.60 425.60 .000 .000 Free Outfall DS HGL+Loss > crest: Flow set to Downstream outlet. S/N: 321B05106A82 Timmons PondPack Ver : 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Individual Outlet Curves Page 3.05 Name. . . . PR 10 File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW RATING TABLE FOR ONE OUTLET TYPE Structure ID = 1 (Orifice-Circular) Upstream ID = (Pond Water Surface) DNstream ID = 3 (Culvert-Circular) NUMBER OF OPENINGS = 6 EACH FLOW = SUM OF OPENINGS x FLOW FOR ONE OPENING Pond WS. Device (into) Converge Next DS HGL Q SUM DS Chan. TW Elev. Q HW HGL DS HGL DS HGL Error Error TW Error ft cfs ft ft ft +/-ft +/-cfs ft +/-ft 416.00 .00 . . . . . . . . . . . . . . . Free Outfall WS below an invert; no flow. 417.00 .00 . . . . . . . . . . . . . . . Free Outfall WS below an invert; no flow. 417.82 .00 . . . . . . . . . . . . . . . Free Outfall WS below an invert; no flow. 418.00 .43 418.00 Free 416.27 .000 .000 Free Outfall CRIT.DEPTH CONTROL Vh= .046ft Dcr= .133ft CRIT.DEPTH 419.00 6.11 419.00 Free 417.21 .000 .000 Free Outfall H =.93 419.50 7.57 419.50 Free 417.39 .000 .000 Free Outfall H =1.43 420.00 7.28 420.00 418.68 418.67 .009 .000 Free Outfall H =1.32 421.00 .00 421.00 421.00 421.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. 422.00 .00 422.00 422.00 422.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. 423.00 .00 423.00 423.00 423.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. 424.00 .00 424.00 424.00 424.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. 425.00 .00 425.00 425.00 425.00 .000 .000 Free Outfall Full riser flow. Q=0 this opening. 425.60 .00 425.60 425.60 425.60 .000 .000 Free Outfall Full riser flow. Q=0 this opening. S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Individual Outlet Curves Page 3.06 Name. . . . PR 10 File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW RATING TABLE FOR ONE OUTLET TYPE Structure ID = 3 (Culvert-Circular) Mannings open channel maximum capacity: 43.24 cfs UPstream ID's= 2, 1 DNstream ID = TW (Pond Outfall) Pond WS. Device (into) Converge Next DS HGL Q SUM DS Chan. TW Elev. Q HW HGL DS HGL DS HGL Error Error TW Error ft cfs ft ft ft +/-ft +/-cfs ft +/-ft 416.00 .00 . . . . . . . . . . . . . . . Free Outfall WS below an invert; no flow. 417.00 .00 416.00 Free Free .000 .000 Free Outfall 417.82 .00 416.00 Free Free .000 .000 Free Outfall 418.00 .43 416.27 Free Free .000 .000 Free Outfall INLET CONTROL. . . Equ.1: HW =.27 dc=.224 Ac=.1937 419.00 6.11 417.21 Free Free .000 .000 Free Outfall INLET CONTROL. . . Equ.1: HW =1.21 dc=.874 Ac=1.3196 419.50 7.57 417.39 Free Free .000 .000 Free Outfall INLET CONTROL. . . Equ.1: HW =1.39 dc=.978 Ac=1.5273 420.00 18.37 418.67 Free Free .000 .000 Free Outfall INLET CONTROL. . . Submerged: HW =2.67 421.00 30.26 421.00 Free Free .000 .000 Free Outfall INLET CONTROL. . . Submerged: HW =5.00 422.00 34.11 422.00 Free Free .000 .000 Free Outfall INLET CONTROL. . . Submerged: HW =6.00 423.00 37.57 423.00 Free Free .000 .000 Free Outfall INLET CONTROL. . . Submerged: HW =7.00 424.00 40.73 424.00 Free Free .000 .000 Free Outfall INLET CONTROL. . . Submerged: HW =8.00 425.00 43.67 425.00 Free Free .000 .000 Free Outfall INLET CONTROL. . . Submerged: HW =9.00 425.60 45.35 425.60 Free Free .000 .000 Free Outfall INLET CONTROL. . . Submerged: HW =9.60 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Composite Rating Curve Page 3.07 Name. . . . PR 10 File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Notes Converge Elev. Q TW Elev Error ft cfs ft +/-ft Contributing Structures 416.00 .00 Free Outfall (no Q: 2,1,3) 417.00 .00 Free Outfall (no Q: 2,1,3) 417.82 .00 Free Outfall (no Q: 2,1,3) 418.00 .43 Free Outfall 1 ,3 (no Q: 2) 419.00 6.11 Free Outfall 1,3 (no Q: 2) 419.50 7.57 Free Outfall 1,3 (no Q: 2) 420.00 18.37 Free Outfall 2,1,3 421.00 30.26 Free Outfall 2,3 (no Q: 1) 422.00 34.11 Free Outfall 2,3 (no Q: 1) 423.00 37.57 Free Outfall 2,3 (no Q: 1) 424.00 40.73 Free Outfall 2,3 (no Q: 1) 425.00 43.67 Free Outfall 2,3 (no Q: 1) 425.60 45.35 Free Outfall 2,3 (no Q: 1) S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Node: Pond Inflow Summary Page 4.01 Name. . . . BASIN IN Event: 100 yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 100yr Tag: 100yr SUMMARY FOR HYDROGRAPH ADDITION at Node: BASIN IN HYG Directory: C:\HAESTAD\PPKW\18809\ Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag A 10 DEVELOPED B2.HYG DEVELOPED 100yr INFLOWS TO: BASIN IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag cu.ft min cfs B2.HYG DEVELOPED 100yr 46653 ' 15.00 51.84 TOTAL FLOW INTO: BASIN IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag cu.ft min cfs B2.HYG BASIN IN 100yr 46653 15.00 51.84 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Node: Pond Inflow Summary Page 4.02 Name. . . . BASIN IN Event: 10Q yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 100yr Tag: 100yr TOTAL NODE INFLOW. . . HYG file = C:\HAESTAD\PPKW\18809\B2.HYG HYG ID = BASIN IN HYG Tag = 100yr Peak Discharge = 51.84 cfs Time to Peak = 15.00 min HYG Volume = 46653 cu.ft HYDROGRAPH ORDINATES (cfs) Time Output Time increment = 1.00 min min Time on left represents time for first value in each row. .00 .00 3.46 6.91 10.37 13.82 5.00 17.28 20.73 24.19 27.65 31.10 10.00 34.56 38.01 41 .47 44.92 48.38 15.00 51.84 48.38 44.92 41.47 38.01 20.00 34.56 31.10 27.65 24.19 20.73 25.00 17.28 13.82 10.37 6.91 3.46 30.00 .00 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: '05-24-2000 Type. . . . Node: Pond Inflow Summary Page 4.03 Name. . . . BASIN IN Event: 10 yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 10yr Tag: 10yr SUMMARY FOR HYDROGRAPH ADDITION at Node: BASIN IN HYG Directory: C:\HAESTAD\PPKW\18809\ Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag A 10 DEVELOPED B2.HYG DEVELOPED 10yr INFLOWS TO: BASIN IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag cu.ft min cfs B2.HYG DEVELOPED 10yr 25796 15.00 28.66 TOTAL FLOW INTO: BASIN IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag cu.ft min cfs B2.HYG BASIN IN 10yr 25796 15.00 28.66 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Node: Pond Inflow Summary Page 4.04 Name. . . . BASIN IN - Event: 10 yr File. . . . C:\HAESTAD\PPKW,\18809\18809-NEW.PPW Storm. . . 10yr Tag: 10yr TOTAL NODE INFLOW. . . HYG file = C:\HAESTAD\PPKW\18809\B2.HYG HYG ID = BASIN IN HYG Tag = 10yr Peak Discharge = 28.66 cfs Time to Peak = 15.00 min HYG Volume = 25796 cu.ft HYDROGRAPH ORDINATES (cfs) Time Output Time increment = 1.00 min min Time on left represents time for first value in each row. .00 .00 1.91 3.82 5.73 7.64 5.00 9.55 11.47 13.38 15.29 17.20 10.00 19.11 21.02 22.93 24.84 26.75 15.00 28.66 26.75 24.84 22.93 21.02 20.00 19.11 17.20 15.29 13.38 11.46 25.00 9.55 7.64 5.73 3.82 1.91 30.00 .00 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Node: Pond Inflow Summary Page 4.05 Name. . . . BASIN IN Event: 25 yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 25yr Tag: 25yr SUMMARY FOR HYDROGRAPH ADDITION at Node: BASIN IN HYG Directory: C:\HAESTAD\PPKW\18809\ Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag A 10 DEVELOPED B2.HYG DEVELOPED 25yr INFLOWS TO: BASIN IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag cu.ft min cfs B2.HYG DEVELOPED 25yr 37778 15.00 33.14 TOTAL FLOW INTO: BASIN IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag cu.ft min cfs B2.HYG BASIN IN 25yr 37778 15.00 33.14 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Node: Pond Inflow Summary Page 4.06 - Name. . . . BASIN IN Event: 25 yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 25yr Tag: 25yr TOTAL NODE INFLOW. . . HYG file = C:\HAESTAD\PPKW\18809\B2.HYG HYG ID = BASIN IN HYG Tag = 25yr Peak Discharge = 33.14 cfs Time to Peak = 15.00 min HYG Volume = 37778 cu.ft HYDROGRAPH ORDINATES (cfs) Time Output Time increment = 1.00 min min Time on left represents time for first value in each row. .00 .00 2.21 4.42 6.63 8.84 5.00 11.05 13.26 15.46 17.67 19.88 10.00 22.09 24.30 26.51 28.72 30.93 15.00 33.14 33.14 33.14 33.14 33.14 20.00 30.93 28.72 26.51 24.30 22.09 25.00 19.88 17.67 15.46 13.26 11.05 30.00 8.84 6.63 4.42 2.21 .00 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Node: Pond Inflow Summary Page 4.07 Name. . . . BASIN IN Event: 2 yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 2yr Tag: 2yr SUMMARY FOR HYDROGRAPH ADDITION at Node: BASIN IN HYG Directory: C:\HAESTAD\PPKW\18809\ Upstream Link ID Upstream Node ID HYG file HYG ID HYG tag A 10 DEVELOPED B2.HYG DEVELOPED 2yr INFLOWS TO: BASIN IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag cu.ft min cfs B2.HYG DEVELOPED 2yr 18661 15.00 20.73 TOTAL FLOW INTO: BASIN IN Volume Peak Time Peak Flow HYG file HYG ID HYG tag cu.ft min cfs B2.HYG BASIN IN 2yr 18661 15.00 20.73 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Node: Pond Inflow Summary Page 4.08 Name. . . . BASIN IN Event: 2 yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 2yr Tag: 2yr TOTAL NODE INFLOW. . . HYG file = C:\HAESTAD\PPKW\18809\B2.HYG HYG ID = BASIN, IN HYG Tag = 2yr Peak Discharge = 20.73 cfs Time to Peak = 15.00 min HYG Volume = 18661 cu.ft HYDROGRAPH ORDINATES (cfs) Time Output Time increment = 1.00 min min Time on left represents time for first value in each row. .00 .00 1.38 2.76 4.15 5.53 5.00 6.91 8.29 9.68 11.06 12.44 10.00 13.82 15.21 16.59 17.97 19.35 15.00 20.73 19.35 17.97 16.59 15.21 20.00 13.82 12.44 11.06 9.68 8.29 25.00 6.91 5.53 4.15 2.76 1.38 30.00 .00 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Pond Routing Summary Page 4.09 Name. . . . BASIN OUT Tag: 100yr Event: 100 yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 100yr Tag: 100yr LEVEL POOL ROUTING SUMMARY HYG Dir = C:\HAESTAD\PPKW\18809\ Inflow HYG file = B2.HYG - BASIN IN 100yr Outflow HYG file = B2.HYG - BASIN ROUT 100yr Pond Node Data = BASIN" Pond Volume Data = BASIN 1 Pond Outlet Data = PR 10 No Infiltration INITIAL CONDITIONS Starting WS Elev = 417.82 ft Starting Volume = 6276 cu.ft Starting Outflow = .00 cfs Starting Infiltr. = .00 cfs Starting Total Qout= .00 cfs Time Increment = 1.00 min INFLOW/OUTFLOW HYDROGRAPH SUMMARY Peak Inflow = 51.84 cfs at 15.00 min Peak Outflow = 30.97 cfs at 21.00 min Peak Elevation = 421.19 ft Peak Storage = 26495 cu.ft MASS BALANCE (cu.ft) + Initial Vol = 6276 + HYG Vol IN = 46653 - Infiltration = 0 - HYG Vol OUT = 46647 - Retained Vol = 6281 Unrouted Vol = - cu.ft ( .000% of Inflow Volume) S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Pond Routing Summary Page 4.10 Name. . . . BASIN OUT Tag: 10yr Event: 10 yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 10yr Tag: 10yr _ LEVEL POOL ROUTING SUMMARY HYG Dir = C:\HAESTAD\PPKW\18809\ Inflow HYG file = B2.HYG - BASIN IN 10yr Outflow HYG file = B2.HYG - BASIN OUT 10yr Pond Node Data = BASIN Pond Volume Data = BASIN 1 Pond Outlet Data = PR 10 No Infiltration INITIAL CONDITIONS Starting WS Elev = 417.82 ft Starting Volume = 6276 cu.ft Starting Outflow = .00 cfs Starting Infiltr. = .00 cfs Starting Total Qout= .00 cfs Time Increment = 1.00 min INFLOW/OUTFLOW HYDROGRAPH SUMMARY Peak Inflow = f at 15.00 min ,,pc' Peak Outflow = 18.76 cfs at 20.00 min , e 44 ."Peak Elevation = 420.03 ft Peak Storage = 18205 cu.ft MASS BALANCE (cu.ft) L _ _ + Initial Vol = 6276 + HYG Vol IN = 25796 - Infiltration = 0 - HYG Vol OUT = 25791 - Retained Vol = 6281 Unrouted Vol = - cu.ft ( .001% of Inflow Volume) S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Pond Routing Summary Page 4.11 Name. . . . BASIN OUT Tag: 25yr Event: 25 yr File. . . . C: \HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 25yr Tag: 25yr LEVEL POOL ROUTING SUMMARY HYG Dir = C:\HAESTAD\PPKW\18809\ Inflow HYG file = B2.HYG - BASIN IN 25yr Outflow HYG file = B2.HYG - BASIN OUT 25yr Pond Node Data = BASIN Pond Volume Data = BASIN 1 Pond Outlet Data = PR 10 No Infiltration INITIAL CONDITIONS Starting WS Elev = 417.82 ft Starting Volume = 6276 cu.ft Starting Outflow = .00 cfs Starting Infiltr . = .00 cfs Starting Total Qout= .00 cfs Time Increment = 1.00 min INFLOW/OUTFLOW HYDROGRAPH SUMMARY Peak Inflow = 33.14 cfs at 15.00 min Peak Outflow = 24.54 cfs at 23.00 min Peak Elevation = 420.52 ft Peak Storage = 21518 cu.ft MASS BALANCE (cu.ft) + Initial Vol = 6276 + HYG Vol IN = 37778 - Infiltration = 0 - HYG Vol OUT = 37773 - Retained Vol = 6281 Unrouted Vol = - cu.ft ( .000% of Inflow Volume) S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Pond Routing Summary Page. 4.12 Name. . . . BASIN OUT Tag: 2yr Event: 2 yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 2yr Tag: 2yr - LEVEL POOL ROUTING SUMMARY HYG Dir = C:\HAESTAD\PPKW\18809\ Inflow HYG file = B2.HYG - BASIN. IN 2yr Outflow HYG file = B2.HYG - BASIN OUT 2yr Pond Node Data = BASIN Pond Volume Data = BASIN 1 Pond Outlet. Data = PR 10 No Infiltration INITIAL CONDITIONS Starting WS Elev = 417.82 ft Starting Volume = 6276 'cu.ft Starting Outflow = .00 cfs Starting Infiltr . = .00 cfs. Starting Total Qout= .00 cfs Time Increment = 1.00 min INFLOW/OUTFLOW HYDROGRAPH SUMMARY Peak Inflow = 20.73 cfs. at 15.00 min Peak Outflow = 11.62 cfs at 22.00 min Peak Elevation = 419.69 ft. Peak Storage = 16012 cu.ft MASS BALANCE (cu.ft) + Initial Vol = 6276 + HYG Vol IN = 18661 - Infiltration = 0 - HYG Vol OUT = 18656 - Retained Vol = 6281 Unrouted Vol = - cui.ft ( .001% of Inflow Volume) S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Mod. Rational Graph Page 5.01 Name. . . . DEVELOPED Tag: 100yr Event: 100 yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 100yr Tag: 100yr MODIFIED RATIONAL METHOD ---- Graphical Summary for Maximum Required Storage ---- Method I Q = CiA * Units Conversion; Where Conversion = 43560 / (12 * 3600) ********************************************************************** * RETURN FREQUENCY: 100 yr 1 Allowable Outflow: 50.00 cfs * 'C' Adjustment: 1.250 1 Required Storage: 1680 cu.ft * STORM DURATION = Tc for Max.Storage * * * Peak Inflow: 51.84 cfs * * .HYG File: 100yr ********************************************************************** Q Tc= 15.00 min I = 6.8000 in/hr Area = 10.800 acres . Q = 51.84 cfs Weighted C = .560 . . Adjusted C = .700 Required Storage . 1680 cu.ft • • I • • I • • 0 0 o Q = 50.00 cfs o . (Allow.Outflow) 0 o NOT TO SCALE . o . 0 15.53 min T S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Mod. Rational Graph. Page 5.02 Name. . . . DEVELOPED Tag: 10yr Event: 10 yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 10yr Tag: 10yr MODIFIED RATIONAL METHOD ---- Graphical Summary for Maximum Required. Storage ---- Method I Q = CiA * Units Conversion; Where Conversion. = 43560 / (12 * 3600) ********************************************************************** * RETURN FREQUENCY: 10 yr I Allowable Outflow: 25.00 cfs * 'C' Adjustment: 1.000 I Required, Storage: 3301 cu.ft * STORM DURATION = Tc for Max.Storage * * * Peak Inflow: 28.66 cfs * .HYG File: 10yr ********************************************************************** Q Tc= 15.00 min I = 4.700.0 in/hr Area = 10.800 acres . Q = 28.66 cfs Weighted C = .560 Adjusted C = .560 Required Storage ------ ---- 3301 cu.ft • I • • • I • 0 0 o Q = 25.00 cfs o . (Allow.Outflow) 0 o NOT TO SCALE . o 0 16.92 min T S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute. Time: 08:28:52 Date: 05-24-2000 Type. . . . Mod. Rational Graph Page 5.03 Name. . . . DEVELOPED Tag: 25yr Event: 25 yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 25yr Tag: 25yr MODIFIED RATIONAL METHOD ---- Graphical Summary for Maximum Required Storage ---- Method I Q = CiA * Units Conversion; Where Conversion = 43560 / (12 * 3600) ********************************************************************** * RETURN FREQUENCY: 25 yr I Allowable Outflow: 30.00 cfs * 'C' Adjustment: 1.100 I Required Storage: 7178 cu.ft * * * Peak Inflow: 33.14 cfs * .HYG File: 25yr ********************************************************************** Q 1 Td = 19.00 min 1 Return Freq: 25 yr / Approx. Duration for Max. Storage / C adj .factor:1.100 Tc= 15.00 min I = 5.5000 in/hr Area = 10.800 acres . Q = 36.90 cfs Weighted C = .560 • 1 . Adjusted C = .616 • 1 • • I • Required Storage . -- 7178 cu.ft Td= 19.00 min • • I = 4.9400 in/hr x x x x x x xlx x x x x x x x x x x Q = 33.14 cfs 1 . x x o Q = 30.00 cfs . x o x (Allow.0utflow) . x o . x o NOT TO SCALE x . x o x 20.42 min T S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . Mod. Rational Graph Page 5.04 Name. . . . DEVELOPED Tag: 2yr Event: 2 yr File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW Storm. . . 2yr Tag: 2yr MODIFIED RATIONAL METHOD ---- Graphical Summary for Maximum Required Storage ---- Method I Q = CiA * Units Conversion; Where Conversion = 43560 / (12 * 3600) ********************************************************************** * RETURN FREQUENCY: 2 yr 1 Allowable Outflow: 20.00 cfs * 'C' Adjustment: 1.000 I Required Storage: 661 cu.ft * STORM DURATION = Tc for Max.Storage * * * Peak Inflow: 20.73 cfs * .HYG File: 2yr ********************************************************************** Q Tc= 15.00 min I = 3.4000 in/hr Area = 10.800 acres . Q = 20.73 cfs Weighted C = .560 . . Adjusted C = .560 Required Storage . 661 cu.ft • I • I • I • 0 0 o Q = 20.00 cfs o . (Allow.Outflow) 0 o NOT TO SCALE . o 0 15.53 min T S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Type. . . . C and Area Page 5.05 Name. . . . DEVELOPED CA File. . . . C:\HAESTAD\PPKW\18809\18809-NEW.PPW RATIONAL C COEFFICIENT DATA Area C x Area Soil/Surface Description C acres acres Overall Site .5600 10.800 6.048 WEIGHTED C & TOTAL AREA ---> .5600 10.800 6.048 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 Appendix A A-1 Index of Starting Page Numbers for ID Names B BASIN IN 100yr. . . 4.01, 4.03, 4.05, 4.07, 4.09, 4.10, 4.11, 4.12 BASIN 1. . . 2.01 D DEVELOPED 100yr. . . 5.01, 5.02, 5.03, 5.04 DEVELOPED CA. . . 5.05 DEVELOPED TC. . . 1.01 P PR 10. . . 3.01, 3.04, 3.07 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (312) Compute Time: 08:28:52 Date: 05-24-2000 / / .dry. ..,,, • ^\ I/ bt .'1 a. \ Q L �.. ' V'1-4 + IP td � �`\ ; ), ' ,, as •/ V 15 ........ __ , 3 :•, , I/ 1, ,,,,, .z... .,,, ,. „..., �J t� ` �, -' V I \�� l 1` ' I ._ / --' )• .. VT i; ,• *, . N, - • ::: I `\ '' 1 ; 1 \ I I afelL11114 - , Ali Ea ksp.04---- ________.. i._, ___... z, ,.; 51 ,r 7 \ ,... �: L 6 9aAh s Ill' ilaiwiel -11-i': CI N. is , 0.1111. \ r_ \ Piri.,... • ,‘.. . . . 1 • .._ _ _ _ . , .. ____ , i ��,,,rr,,,' _ ... . ., "m�i- — 1.N....._ � � "Iltn/�,,....._iii 1 i: ________ . _ �,, \ _ v 00 '.JI I 1 /r e-<I .L/ - , R_ III/ ,y, / I i%I -:4 .� , a i9 1kk 1 .-_ 3 6 3 ....., ;A ♦ I �; I ( I r 4 rF I ro /1 / I'r r1 , tt R (-I, `' g �<' , 11 ` 4VI t 11 j 1¢1 IIi� l i _ f _r, _ w&hk i---I i•- I--+�`�;�,\...�•!'. r'1 t C :W?� n h �y�n,, I i• B.• I ; .Y €T... -..., !n r t j II , a� ` l _ a - c - 9H•= b._(.,, ? C�•4'=`�•- ® C I r ._ `�tr. J3 6, `te -:0 --l._ .i-7 '•N-- _`.--«.. --`- e= _ y , {`•:' �+ /I 7' -._qY � ai� - -«_ - �.__ _ ,a,E � `.,y -�e `�2. .;4•r•- ',,,{ isi a� J O. 1 h� I Q 1_ - y ` r e �� , ( :.'n, /'� "\' - w._,----- i...z-z�. - l - .. _ r•_ •'YI"'•�-!1`-S..^._ 6 _•�"lke�.�__ \, 'x�• 1 f a,vV I • S',•.''>''' ( ' 7'e2TAjS ... ^-...`'' ti_ ''C,_�';..'c_--_:�5::_:.::.., - - _ _:;..am::_ _ 1 OC. N� ti ter• H'...-.:q ( 'fix-_',X� _ — - •-(<' •_ -..- ..- 1 1 1 1 `ram—';- -- 7,'r`_ - .. ! , I I `N_. '\._ti.., max' I / I I , 1 1 I r a In/Qv-1 3102 43 Rs = 2 (wQv) _ 6205" -11✓ CLi= 9-18 - z-236 .41 069( 1141750-1- I g EL2 = �tiq' VJ2= ioln►° . r-3 l$,2 j(E12-Et9)7 y= (f--1/1) L Cv2-Y9) J L9 ( r�- _(620_"-5236)1-(lol6�t6.114s1293)6)-7* 44/8 = '/8_20 ELO = 4L/6 ' (y- £Lc) 4kl$.2 - 44/6 LMS,Z- 6 Z IY - 2 2 /. / -t-- CI Q(6U)c60) 43 2oo s 3 7,60 iS = /-32oo 62a5- qs 6 —Q = t 0./�t s0 I t 3i4 ► ,5)oss d= (taG ?r ( -h)o.-3) - 0.22 5 b p s � 01.12 (0,22)02) - '/ ° Z�- I1:° Table of Contents i Table of Contents *********************** POND VOLUMES *********************** BASIN 1 Vol: Planimeter 1.01 ******************** OUTLET STRUCTURES ********************* PR 10 Outlet Input Data 2.01 *********************** POND ROUTING *********************** BASIN OUT 100yr Pond Routing Summary 3.01 BASIN OUT l0yr Pond Routing Summary 3.02 BASIN OUT 25yr Pond Routing Summary 3.03 BASIN OUT 2yr Pond Routing Summary 3.04 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (325) Compute Time: 15:46:52 Date: 11-01-2000 I � Type_ . . . Vol: Planimeter Page 1.01 Name. . . . BASIN 1 File. . . . K:\18809 BLUE RIDGE JDC\PONDPACK\18809-NEW.PPW POND VOLUME CALCULATIONS Planimeter scale: 1.00 ft/in Elevation Planimeter Area A1+A2+sgr(A1*A2) Volume Volume Sum (ft) (sq. in) (acres) (acres) (cu.ft) (cu.ft) f 416.00 1658.000 .0381 .0000 0 0 417.00 2445.900 .0562 .1404 2039 2039 418.00 4465.000 .1025 .2345 3405 5444 419.00 5460.000 .1253 .3412 4954 10399 42 0.00 6512.000 .1495 .4117 5978 16377 421.00 7622.000 .1750 .4862 7060 23437 422.00 8799.000 .2020 .5650 8203 31640 423.00 10039.000 .2305 .6482 9412 41052 424.00 11318.000 .2598 .7350 10672 51724 425.00 12654.000 .2905 .8251 11980 63704 426.00 14038.000 .3223 .9187 13340 77044 Elevations With Areas Interpolated From The Closest Two Planimeter Readings Elevation Planimeter Area A1+A2+sgr(A1*A2) Volume Volume Sum (ft) (sq. in) (acres) (acres) (cu.ft) (cu.ft) 418.20 .1069 .3141 912 6357 POND VOLUME EQUATIONS * Incremental volume computed by the Conic Method for Reservoir Volumes. Volume = (1/3) * (EL2-EL1) * (Areal + Area2 + sq.rt. (Areal*Area2)) where: EL1, EL2 = Lower and upper elevations of the increment Areal,Area2 = Areas computed for EL1, EL2, respectively Volume = Incremental volume between EL1 and EL2 Interpolated area from closest two given contour areas is computed using the relationship: IA = (sq.rt(Areal) + ((Ei-E1)/(E2-E1))*(sq.rt(Area2)-sq.rt(Areal)))**2 where: El, E2 = Closest two elevations with planimeter data Ei = Elevation at which to interpolate area Areal,Area2 = Areas computed for El, E2, respectively IA = Interpolated area for Ei S/N: 3.21B05106A82 Timmons PondPack Ver : 7.0 (325) Compute Time: 15:46:52 Date: 11-01-2000 Type. . . . Outlet Input Data Page 2.01 Name. . . . PR 10 File. . . . K:\18809 BLUE RIDGE JDC\PONDPACK\18809-NEW.PPW REQUESTED POND WS ELEVATIONS: . Min. Elev.= 416.00 ft Increment = 1.00 ft Max. Elev.= 425.60 ft OUTLET CONNECTIVITY ********************************************** ---> Forward Flow Only (Upstream to DnStream) <--- Reverse Flow Only (DnStream to Upstream) <---> Forward and Reverse Both Allowed Structure No. Outfall El, ft E2, ft Stand Pipe 2 ---> 3 419.500 425.600 Orifice-Circular 1 ---> 3 418.200 425.600 Culvert-Circular 3 ---> TW 416.000 425.600 TW SETUP, DS Channel S/N: 321B05106A82 Timmons PondPack Ver : 7.0 (325) Compute Time: 15:46:52 Date: 11-01-2000 Type. . . . Outlet Input Data Page 2.02 Name. . . . PR 10 File. . . . K:\18809 BLUE RIDGE JDC\PONDPACK\18809-NEW.PPW OUTLET STRUCTURE INPUT DATA Structure ID = 2 Structure Type = Stand Pipe # of Openings = 1 Invert Elev. = 419.50 ft Diameter = 36.00 in Orifice Area = 7.0686 sq.ft Orifice Coeff. = .670 Weir Length = 9.42 ft Weir Coeff. = 3.330 K, Submerged = .000 K, Reverse = 1 .000 Kb,Barrel = .000000 (per ft of full flow) Barrel Length = .00 ft Mannings n = .0000 Structure ID = 1 Structure Type = Orifice-Circular # of Openings = 1 Invert Elev. = 418.20 ft Diameter = 3.00 in Orifice Coeff. = .670 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (325) Compute Time: 15:46:52 Date: 11-01-2000 Type. . . . Outlet Input Data Page 2.03 Name. . . . PR 10 File. . . . K:\18809 BLUE RIDGE JDC\PONDPACK\18809-NEW.PPW OUTLET STRUCTURE INPUT DATA Structure ID = 3 Structure Type = Culvert-Circular No. Barrels = 1 Barrel Diameter = 24.00 in Upstream Invert = 416.00 ft Dnstream Invert = 413.00 ft Horiz. Length = 95.00 ft Barrel Length = 95.05 ft Barrel Slope = .03158 ft/ft OUTLET CONTROL DATA. . . Mannings n = .0130 Ke = .5000 (forward entrance loss) Kb = .012411 (per ft of full flow) Kr = .5000 (reverse entrance loss) HW Convergence = .001 +/- ft INLET CONTROL DATA. . . Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.144 T2 ratio (HW/D) = 1.291 Slope Factor = - .500 Calc inlet only = Yes Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2. . . At T1 Elev = 418.29 ft ---> Flow = 15.55 cfs At T2 Elev = 418.58 ft ---> Flow = 17.77 cfs Structure ID = TW Structure Type = TW SETUP, DS Channel FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES. . . Maximum Iterations= 30 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .10 cfs Max. Q tolerance = .10 cfs S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (325) Compute Time: 15:46:52 Date: 11-01-2000 Type. . . . Pond Routing Summary Page 3.01 Name_ . . . BASIN OUT Tag: 100yr Event: 100 yr File. . . . K:\18809 BLUE RIDGE JDC\PONDPACK\18809-NEW.PPW Storm. . . 100yr Tag: 100yr LEVEL POOL ROUTING SUMMARY HYG Dir = K:\18809 BLUE RIDGE JDC\PONDPACK\ Inflow HYG file = B2.HYG - BASIN IN 100yr Outflow HYG file = B2.HYG - BASIN OUT 100yr Pond Node Data = BASIN Pond Volume Data = BASIN 1 Pond Outlet Data = PR 10 No Infiltration INITIAL CONDITIONS Starting WS Elev = 418.20 ft Starting Volume = 6357 cu.ft Starting Outflow = .00 cfs Starting Infiltr. = .00 cfs Starting Total Qout= .00 cfs Time Increment = 1.00 min INFLOW/OUTFLOW HYDROGRAPH SUMMARY Peak Inflow = 51.84 cfs at 15.00 min Peak Outflow = 31.81 cfs at 21.00 min Peak Elevation = 421.40 ft Peak Storage = 26598 cu.ft MASS BALANCE (cu.ft) + Initial Vol = 6357 + HYG Vol IN = 46653 - Infiltration = 0 - HYG Vol OUT = 46597 - Retained Vol = 6408 Unrouted Vol = -4 cu.ft (.009% of Inflow Volume) S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (325) Compute Time: 15:46:52 Date: 11-01-2000 Type. . . . Pond Routing Summary Page 3.02 Name. . . . BASIN OUT Tag: 10yr Event: 10 yr File. . . . K:\18809 BLUE RIDGE JDC\PONDPACK\18809-NEW.PPW Storm. . . 10yr Tag: 10yr LEVEL POOL ROUTING SUMMARY HYG Dir = K:\18809 BLUE RIDGE JDC\PONDPACK\ Inflow HYG file = B2.HYG - BASIN IN 10yr Outflow HYG file = B2.HYG - BASIN OUT 10yr Pond Node Data = BASIN Pond Volume Data = BASIN 1 Pond Outlet Data = PR 10 No Infiltration INITIAL CONDITIONS Starting WS Elev = 418.20 ft Starting Volume = 6357 cu.ft Starting Outflow = .00 cfs Starting Infiltr. = .00 cfs Starting Total Qout= .00 cfs Time Increment = 1.00 min INFLOW/OUTFLOW HYDROGRAPH SUMMARY Peak Inflow = 28.66 cfs at 15.00 min Peak Outflow = 19.08 cfs at 20.00 min Peak Elevation = 420.41 ft Peak Storage = 19112 cu.ft MASS BALANCE (cu.ft) t Initial Vol = 6357 t HYG Vol IN = 25796 Infiltration = 0 - HYG Vol OUT = 25740 - Retained Vol = 6408 Unrouted Vol = -4 cu.ft ( .017% of Inflow Volume) S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (325) Compute Time: 15:46:52 Date: 11-01-2000 , Type. . . . Pond Routing Summary Page 3.03 Name. . . . BASIN OUT Tag: 25yr Event: 25 yr K:\18809 BLUE RIDGE JDC\PONDPACK\18809-NEW.PPW Storm. . . 25yr Tag: 25yr LEVEL POOL ROUTING SUMMARY HYG Dir = K:\18809 BLUE RIDGE JDC\PONDPACK\ Inflow HYG file = B2.HYG - BASIN IN 25yr Outflow HYG file = B2.HYG - BASIN OUT 25yr Pond Node Data = BASIN Pond Volume Data = BASIN 1 Pond Outlet Data = PR 10 No Infiltration INITIAL CONDITIONS Starting WS Elev = 418.20 ft Starting Volume = 6357 cu.ft Starting Outflow = .00 cfs Starting Infiltr. = .00 cfs Starting Total Qout= .00 cfs Time Increment = 1.00 min INFLOW/OUTFLOW HYDROGRAPH SUMMARY Peak Inflow = 33.14 cfs at 15.00 min Peak Outflow = 26.51 cfs at 22.00 min Peak Elevation = 420.80 ft Peak Storage = 21942 cu_ft MASS BALANCE (cu.ft) + Initial Vol = 6357 + HYG Vol IN = 37778 - Infiltration = 0 - HYG Vol OUT = 37722 - Retained Vol = 6408 Unrouted Vol = -4 cu.ft (.011% of Inflow Volume) S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (325) Compute Time: 15:46:52 Date: 11-01-2000 Type. . . . Pond Routing Summary Page 3.04 Name. . . . BASIN OUT Tag: 2yr Event: 2 yr File. . . . K:\18809 BLUE RIDGE JDC\PONDPACK\18809-NEW.PPW Storm. . . 2yr Tag: 2yr LEVEL POOL ROUTING SUMMARY HYG Dir = K:\18809 BLUE RIDGE JDC\PONDPACK\ Inflow HYG file = B2.HYG - BASIN IN 2yr Outflow HYG file = B2.HYG - BASIN OUT 2yr Pond Node Data = BASIN Pond Volume Data = BASIN 1 Pond Outlet Data = PR 10 No Infiltration INITIAL CONDITIONS Starting WS Elev = 418.20 ft Starting Volume = 6357 cu.ft Starting Outflow = .00 cfs Starting Infiltr. = .00 cfs Starting Total Qout= .00 cfs Time Increment = 1.00 min INFLOW/OUTFLOW HYDROGRAPH SUMMARY Peak Inflow = 20.73 cfs at 15.00 min Peak Outflow = 13.04 cfs at 21.00 min Peak Elevation = 420.09 ft Peak Storage = 16936 cu.ft MASS BALANCE (cu.ft) + Initial Vol = 6357 + HYG Vol IN = 18661 - Infiltration = 0 - HYG Vol OUT = 18605 - Retained Vol = 6408 Unrouted Vol = -4 cu.ft ( .023% of Inflow Volume) S/N: 321B05106A82 Timmons PondPack Ver : 7.0 (325) Compute Time: 15:46:52 Date: 11-01-2000 Appendix A A-1 Index of Starting Page Numbers for ID Names B BASIN 1. . . 1.01 P PR 10. . . 2.01 S/N: 321B05106A82 Timmons PondPack Ver: 7.0 (325) Compute Time: 15:46:52 Date: 11-01-2000 d STORM SEWER DESIGN COMPUTATIONS PROJECT: Blue Ridge Juvenile Detention Facilit 18809 4 COUNTY: Albemarle DESCRIPTION: Storm Sewer DATE: 5/30/00 Storm Frequency 10 year n= 0.013 *= Manual Input of Data * * * * * * * * * * * * (3 Q FROM PIPE TO )RAINAGERUNOFF CA CA INLET RAIN- RUNOFF TOP HEIGHT INV INV. LENGTH SLOPE DIA CAPACITY VELOCITY FLOW i REMARKS Addition Additional STR TYPE PIPE TYPE POINT NAME POINT AREA )EFFICIE INCRE. ACCUM. TIME FALL Q STR STR UPPER LOWER TIME BLDG A C*A (acres) (min) (in/hr) (cfs) (elev) (ft) (ft) (ft) (ft) (ft/ft) (in) (cfs) (ft/s) (min) 1 2 3 0.32 0.45 0.14 0.14 5.00 7.1 1.0 486.00 3.00 483.00 480.50 249.57 0.0100 15 6.5 5.27 0.79 ok 0 DI-1 CLASS III RCP 3 4 5 0.00 0.89 0.00 0.14 5.79 6.9 1.0 484.04 3.64 480.40 479.80 60.28 0.0100 15 6.5 5.27 0.19 ok 0 MH-2 CLASS III RCP 5 6 7 0.00 0.90 0.00 0.14 5.98 6.8 1.0 484.00 4.30 479.70 478.68 102.15 0.0100 15 6.5 5.27 0.32 ok 0 MH-2 CLASS III RCP 7 8 9 0.00 0.43 0.00 0.14 6.30 6 7 1.0 484.00 5.42 478.58 476.76 181.69 0.0100 15 6.5 5.27 0.58 ok 0 0 MH-2 CLASS III RCP 9 10 11 0.45 0 47 0.21 0.36 6.88 6.5 2.3 483.00 6.34 476.66 475.45 121.14 0.0100 15 6.5 5.27 0.38 ok 0 DI-1 CLASS III RCP 11_ 12 13 0.29 0.53 0.15 0.51 7.26 6.4 3.3 484.00 8.65 475.35 475.03 31.99 0.0100 15 • 6.5 5.27 0.10 ok 0 DI-1 CLASS III RCP 13 14 15 0.11 0 58 0.07 0.58 7.36 6.4 3.7 483.21 8.28 474.93 473.79 114.63 0.0100 15 6.5 5.27 0.36 ,i: CLASS III RCP 19 20 21 4,00 0,56 2.25 2.25 5.00 7.1 16.0 508.00 5.00 503.00 484.00 54.92 0.3459 15 38.0 30.98 0.03 ok Type IIIA 0 09.113. CLASS III RCP 21 22 23 0.00 0.44 0.03 2.28 5.03 7.1 16.2 487.79 4.54 483.25 482.50 75.16 0.0100 24 22,> 7.21 0.17 ok 0 DI-1 CLASS III RCP 23 24 25 0.42 0.44 0.18 2.46 5.20 7.1 0 7.5 487.00 4.60 482.40 481.94 45.37 0.0100 24 22 7.21 0.11 ok 0 DI-1 CLASS III RCP 25 26 27 0.09 0.59 0.05 2.51 5.31 7 17.6,' 487.00 5.16 481.84 481.15 69.16 0.0100 24 22, 7.21 0.16 ok 0 0 DI-1 CLASS III RCP 31 32 33 0.29 0.87 0.26 0.26 5.00 7.1 1.8 495.00 4.00 491.00 490.44 56.45 0.0100 15 6.5 5.27 0.18 ok 0 0 DI-38, L=8; CLASS III RCP 33 34 35 0.25 0.59 0.15 0.40 5.18 7.1 2.9 496.00 5.66 490.34 489.83 50.36 0.0100 15 6.5 5.27 0.16 ok 0 0 DI-39, L=8' CLASS III RCP 35 36 27 0, 4 0.64 0.28 0.69 5.34 7 4.8 497.33 7.60 489.73 481.80 78.22 0.1014 15 20,6 16.77 0.08 ok I DI-3B,L=6' CLASS III RCP 27 28 29 t •1 057 0.35 3.55 5.47 7 24.8 490.65 9.60 481.05 478.92 106.90 0.0200 24 10.19 0,18 Lk ` ,3BB, L.=8'CLASS III RCP 29 30 15 ult.., }8 0.06 3.60 5.64 6.9 24.9 485.00 6.18 478.82 473.04 104.81 0.0551 24 L 16.92 0.10 . 5. L 4 4' CLASS III RCP 15 16 END 0.55 0.73 0.40 4.58 7.73 6.2 28.4 483.23 10.70 472.54 472.30 24.00 0.0100 30 8.36 0.05 ok 0 0l-3CC, L=8 CLASS III RCP Ditch west top of slope ne 2 13 0 35 0.75 0.75 10.00 5.6 4.2 Ditch toe of slope near se 0.31 0.35 0.11 0.11 5.00 7.1 0.8 483.23 10.70 472.54 472.30 24.00 0.0100 30 41.0 8.36 0.05 ok 0 DI-3CC,L=8 CLASS III RCP * ee,2 Gu4 Ae c v CD Ao - �•• cp 00 00000 00000000 � o '-1 - o. m Ca Oa Ca .-' ta to to t'O t) Ca Cn 1 CD AL F-' ' IA Ca Cn CO A Ca Cn 1 CD r--' CO Cn r r r Cn o - o to O r i-' 0 0 ta ..-� 07 O CO Co `-' Ca Ga .A A O Oa C.o .A A <-1- .-' 0 OO CO CO A, Ca Oa O hO CO 1 0 00 A A .A .A A A A .A A A A .A .A .A .A .A A - . CO OD CO CO 00 oo OD 1 1 00 1 1 1 1 1 1 1 cD CD O CO .--' A N AL AL CO Oa 0 CD 00 6) Cn Cn Oa hD C K .A 00 *co O cn 6, f•- O O 'on0) 6) 1 4 O J 'co ,, ,-. .r. A Oa O O O A Cn to A O o 00 6) Cn Ca CD 0 '-' uU tiicnpci) A A A A A A A A A A A A A A A A A CD O ¢) 'Z CO CD CO 00 00 00o0 00 100 00 00 1 1 1 1 1 C •,�-•, cr ,�*_, r' 0 0--, Cn Cn Cn A r 0 .A ' r ' AL --I 1 60 6) 6) E O c A O 1 o-,' CJt 0 A 00 . OCn Cn Cn 1 O 00 Ca O cr po A Ca A O CO O) O to A 0 A O 6) to 6) 00 Ca CD �' IA 4 i--' [D to to tea A, r A, A, 4 r r Ca d Cn Cn CP Cn A A A A .A Cn Cn Cn Cn• Cn Cn Cn O - - - - - - - - - - - - - - - - - .-' r' H' A, N hO t•O `0 O r' to 4, Cn 6) 1 J .A .A r-' O O O t�O Ca Ca 00 O 00 00 00 CD i-' A Cn 00 00 o CD CO CO Ca 'D 1 A r' A 00 to co 0o Co 00 t' 6) N CO 00 6) t' Cn t'O hO CO r 0 Cn Cn 1 Cn 1 A 6) O O A 6) O 00 t'-O CO H' to 6) 0 CO A Cn Cn CC 6) A CO O ta A' - la A A A A ta C.D to A No CD OO 0 Co I--' 1 - O 6) O O O co 0 0 0 0 A - O O O O O O O O o 0 ko cn A Cn O) 6) N) LSO O O O O r N) 'co .A 00 O co co A O O O r-' t) to t) Ca co Cn co 00 O 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O co AO O O O O O O O — OD O •A W Ca ko A N) N) O O O O A O Ca - co A O c a co 00 1 N) co 1 co F to A O) 00 00 t) o CD A, 1--' H-' Ci A' to A CO 1 1 1 O O N N H' f-' ta CO Ca 1 0 A N CO o A Ca W O.) A A O O O A A CO 6) CO 01 i•-' Ca Cn CO 6) CO A, 6) 6) Cn CO CO CO 00 h0 O O O 000000 00000000 0 O O O 6) N) N N) AA O O O O O O O t) Ato Co co O A A to ) AL O O O to Cn 6) Co ALta .4 Cn011AA A' 000taCa0) CO GO 00 00 CO A• A Cn 'co 'op O Co CD Co O.) 'No 1 A A co to cD Oo cD co to co No co oo coo to cn to to Oa r-' A cn A to o Oo 0 1 1 O Cn A A, Cn o to CO Oa LSO .A .CC) c.0 .--' Ca Ca Ga LSO O O N) 0O 6) 4 -1 a al 1 hO Oa oO O 00 co 6) co 1 CD -' 1 Cn co CO 00 al AD b F 1-' Co CO 1-' to 47 Cn .-' O 0 CO .A A Cn N 00 00 N) 00 Cn !--' 1-' Cn N 00 Ca :1 O' Q Cn 44 C.a0000oJA 4i-' 0 �--' OCn OCn c) m 4. O O O A cn O O O �-' O O O o 0 0 0 0 No "• D 0A O Co O J OO C7 0 A O O 'A O A r-' N) c) m T. Oa Oa O CO A' Ca A CO Ca hO t) Ca AL LA CO t) .•� A• a) O a) O O O Cn h 0 0 0 0 0 0 0 0 0 0 0 0 .r 0 D N O O 1 l�O L O [� Cn �-' O O r-' 0 0 0 0 ~ r c. w Cn A, Cn ta 00 Cn CO CD CO Cn r-' A, Cn O .A 1 00 00 cp m p A CO i-' A CO 1-' CO A A Cn co co CO cD 6 m CD CO 00 Ca O 0 CO Cn Cn Cn Cn r r- O Cl4 C7 m O O 00000 0000000 rr m CD p O O 00 Ca Cn 6) 6 O O h0 O O O 1-' car - . ' coCD 1-' A CD O A A' A A O A 1 6) 0) p OOO Cn La O AL AL 00000000 x m c+ o) AL O CO 00 1 1 0 co 0 A O O 'co O A io .A 6) Cn Ca 1 CO CD CO H' Cn 6) to t) CO Oa Oa O 0 O o 0 1 O o O ~ ez No O 'co 0 h0 O A ,, O A 0 O A O A 0 O O O C4 .40000 0 0 0 0 0 0 0 0 O 1-' 6 �' OO .AACn6) 00 1-' . ONOo . xCn O CAD Cn N O O Cl' 6) Ca O 1-' A' o t) CO o Ca `* O O O O 1 r 0 0 L t') 0 0 0 0 0 0 0 0 •x 't d �' )-- Cn 1-' •1 <7) Co CO O r-' O O kO • • -' A co O A) Cn co CO CO 00 1 0 A CO 0 Ca Oa A CO O) CO Cn P CDD til GO A A A A A A A A A A A A A A A A A CD n C) �-. CD CO CO CD 00 CO CO 00 1 00 00 Co 1 1 1 1 1 C '7' w 4' o hO Ca 1 Cn Cn No A A Aoo 1 1 0 0 o Cn CD O i-' Cn 1 O A 1 1 Cn Cn O ' O ao Ca o OO co No 00 A co 0 O) o.o N) CO A O O fa O) 00 0 A A A Cn A A .A A .A A A A A A A A A CD E CD CD CO o CO 00 00 CC 00 00 CO 00 00 CO Co CO 00 C Cn 0 1 00 1 1 1 O Cn 6) A A A Oa A Oa Ca O O Ca O 1 O o 0 O o 0 0 0 0 0 t) kO O O co C_co O O Cn O O A O O O O 4' Ca x z CM zc-F A)I'' ,c 1-c sc I-c ,-c � '-c 1 � , l'c I t i'c ,'c ,-c '-c iF' g2 z P 000 000000 00000000 0 0 I R Oa Cn Oa Cn o r O 0 00 .A No A 0 Cn Co 0 Co co cn A O A 0O N) N N) N) N) N A N) 0 00 CD 'co Co es N A to N CO 1 00 0 1 00 00 CO O O 00 0 0 C) cr cr cr cY cr c* cr cr ,, cr cr ,, ,, e, ,, ,, cr DA: INLET 1 C-factor Area Grass 0.40 0.290 0.116 Fut. Bldg. 0.90 0.031 0.0279 Area Total C-factor ' 0.321 0.448 Tc: Tc= 5.0 minutes 12= 5.60 Q2= 0.8 cfs Ito= 7.10 Q10= 1.0 cfs 125= 8.20 Q25= 1.2 cfs 150= 10.80 Q50= 1.6 cfs Iwo= 12.50 Qum= 1.8 cfs DA: INLET 9 C-factor Area Grass 0.40 0.387 0.1548 Pavement 0.90 0.065 0.0585 Area Total C-factor 0.452 0.472 Tc: Tc= 5.0 minutes 12= 5.60 Q2= 1.2 cfs 110= 7.10 Clio= 1.5 cfs I25= 8.20 Q25= 1.7 cfs I50= 10.80 Q50= 2.3 cfs 1100= 12.50 Q1oo= 2.7 cfs 1 DA: INLET 11 C-factor Area Grass 0.40 0.211 0.0844 Pavement 0.90 0.074 0.0666 Area Total C-factor 0.285 0.530 Tc: Tc= 5.0 minutes 12= 5.60 Q2= 0.8 cfs 110= 7.10 Qio= 1.1 cfs I25= 8.20 Q25= 1.2 cfs 150= 10.80 Q50= 1.6 cfs I1oo= 12.50 Qum= 1.9 cfs DA: INLET 13 C-factor Area Grass 0.40 0.048 0.0192 Pavement 0.90 0.059 0.0531 Area Total C-factor 0.107 0.676 Tc: Tc= 5.0 minutes _ 12= 5.60 Q2= 0.4 cfs 110= 7.10 Q10= 0.5 cfs 125= 8.20 Q25= 0.6 cfs I50= 10.80 Qso= 0.8 cfs 1100= 12.50 Q1oo= 0.9 cfs DA: INLET 15 C-factor Area Grass 0.40 0.182 0.0728 Pavement 0.90 0.363 0.3267 Area Total C-factor 0.545 0.733 Tc: Tc= 5.0 minutes 12= 5.60 Q2= 2.2 cfs I�0= 7.10 Q10= 2.8 cfs I25= 8.20 Q25= 3.3 cfs I50= 10.80 Q50= 4.3 cfs 1100= 12.50 Q100= 5.0 cfs DA: INLET 19 C-factor Area Grass 0.40 0.05 0.02 Ex.Armory 0.80 2.40 1.92 Woods 0.20 1.55 0.31 Area Total C-factor 4.00 0.563 Tc: Overland: Length = 298 ft Slope = 10.0 % c-factor= 0.25 tc= 15.3 minutes Concentrated: Length = 200 ft H = 9 ft 1.6 minutes Tc= 16.9 minutes 12 = 3.62 Q2= 8.1 cfs Ito= 4.94 Q10= 11.1 cfs 125= 5.62 Q25= 12.6 cfs 15o= 7.73 Q55= 17.4 cfs I1oo= 8.68 Q1oo= 19.5 cfs DA: INLET 21 C-factor Area Grass 0.40 0.057 0.0228 Fut. Bldg. 0.90 0.005 0.0045 Area Total C-factor 0.062 0.440 Tc: Tc= 5.0 minutes 12= 5.60 Q2= 0.2 cfs lio= 7.10 Clio= 0.2 cfs 125= 8.20 Q25= 0.2 cfs I50= 10.80 Qso= 0.3 cfs lion= 12.50 Qioo= 0.3 cfs DA: INLET 23 C-factor Area Grass 0.40 0.391 0.1564 Pavement 0.90 0.031 0.0279 Area Total C-factor 0.422 0.437 Tc: Tc= 5.0 minutes 12= 5.60 Q2= 1.0 cfs Ito= 7.10 Q10= 1.3 cfs 125= 8.20 Q25= 1.5 cfs 150= 10.80 Q50= 2.0 cfs 1100= 12.50 Q100= 2.3 cfs DA: INLET 25 C-factor Area Grass 0.40 0.073 0.0292 Pavement 0.90 0.020 0.018 Area Total C-factor 0.093 0.508 Tc: Tc= 5.0 minutes 12= 5.60 Q2= 0.3 cfs Iio= 7.10 Q10= 0.3 cfs I25= 8.20 Q25= 0.4 cfs 150= 10.80 Q50= 0.5 cfs 1100= 12.50 Q100= 0.6 cfs . DA: INLET 27 C-factor Area Grass 0.40 0.272 0.1088 Pavement 0.90 0.244 0.2196 Woods 0.20 0.091 0.0182 Area Total C-factor 0.607 0.571 Tc: Overland: Length = 189 ft Slope= 2.0 % c-factor= 0.40 tc= 10.7 minutes Concentrated: Length = 355 ft H = 42 ft 1.7 minutes Tc= 12.4 minutes 12= 4.22 Q2= 1.5 cfs Ito= 5.62 Q10= 1.9 cfs 125 = 6.38 Q25= 2.2 cfs 150= 8.66 Q50= 3.0 cfs I1oo= 9.78 Q1oo= 3.4 cfs i DA: INLET 29 C-factor Area Grass 0.40 0.001 0.0004 Pavement 0.90 0.064 0.0576 Area Total C-factor 0.065 0.892 Tc: Tc= 5.0 minutes 12= 5.60 Q2= 0.3 cfs Iio= 7.10 Q10= 0.4 cfs 125= 8.20 Q25= 0.5 cfs I50= 10.80 Q50= 0.6 cfs I1o0= 12.50 Q100= 0.7 cfs 6 DA: INLET 31 C-factor Area Grass 0.40 0.019 0.0076 Pavement 0.90 0.275 0.2475 Area Total C-factor 0.294 0.868 Tc: Tc= 5.0 minutes 12= 5.60 Q2= 1.4 cfs Ito= 7.10 Qio= 1.8 cfs 125= 8.20 Q25= 2.1 cfs 150= 10.80 Q50= 2.8 cfs 1100= 12.50 Q1Oo= 3.2 cfs DA: INLET 33 C-factor Area Grass 0.40 0.154 0.0616 Pavement 0.90 0.098 0.0882 Area Total C-factor 0.252 0.594 Tc: Tc= 5.0 minutes 12= 5.60 Q2 = 0.8 cfs Iio= 7.10 Clio= 1.1 cfs 125 = 8.20 Q25= 1.2 cfs 150= 10.80 Q50= 1.6 cfs 1100= 12.50 Qm00= 1.9 cfs DA: INLET 35 C-factor Area Grass 0.40 0.231 0.0924 Pavement 0.90 0.212 0.1908 Area Total C-factor 0.443 0.639 Tc: Tc= 5.0 minutes 12= 5.60 Q2= 1.6 cfs Iio= 7.10 Q10= 2.0 cfs 125= 8.20 Q25= 2.3 cfs I50= 10.80 Q50= 3.1 cfs Iaoo= 12.50 (two= 3.5 cfs r • • 44®12'" HORIZ. ®12 VERT. NOTE: TOP OF WALL SLOPES TO MATCH FIN. GRADE r4 FIN. GRADE �` \- 5" ' 6" 5" / / / / o R #4012" HORIZ. 2' CLR. (2° CUR. e CO #4012° VERT. A/_ 40i2 : HORIZ. r /-#4012 VERT. as W 1 ca C9 r m _\___\ FIN. GRADE #6®8'0. 3 4" WASHED STONE 3 2f-0" HIGH x 1'-6" WIDE o '' WRAPPED IN FILTER FABRIC I II r { 4'0 PVC DRAIN ' ._ (PERFORATED) -\ — `.1-ia: -A..; W/ HOLES DOWN co T r '11: 'J f.�F.(t7 4 IN o -1 •.RTC I IL-T)'; (6)—#6S se titc. i T�'•,\\ #608'o.C. CO d ` i ' ;:nt -1. ' �— s , — . g /9 1/2" M 7,-0" SITE RETAINING WALL SECTION 3/4" = 1'-0" NOTE: FOR LOCATION OF SECTION CUT, REFER TO DRAWING C3.1 DRAWING TITLE: PROJECT: SITE RETAINING WALL BLUERIDGE JUVENILE DETENTION CENTER SECTION / S3.1 . ALBEMARLE COUNTY, VIRGINIA MOSELEY DRAWN BY: ATTACHMENT TO: DWG. NO.: !,,..,„§ HARRIS & SJS ADD.#3 NicCLI NTOCK DATE: COMMISSION NO.: AD-S5 ARa11Ec1URE ENGN RHO PLANNING R(T OR DESIGN CONSTRUCTION SEMDES SEPT. 7, 2000 391180 001 soon Iu02 BOULEVARD RICMO D,NRf fiA 23236 (004) T04-7566 Rt TZE- DEVELoP ED DA: Basin C-factor Area 0.31 1.79 0.55 0.33 0 72 0.24 0.38 4 48 1.70 0.36 8.21 2.96 Area Total C-factor 15.2 0.36 Tc: Overland: Length = 200 ft Slope= 3.0 % c-factor= 0.38 tc= 10.7 minutes Concentrated: Length = 1065 ft H = 127ft 4.0 minutes Pipe Flow 7.7 minutes Tc= 22.3 minutes 12= 3.27 Q2= 17.8 cfs Igo= 4.27 Quo= 23.3 cfs I25= 4.97 Q25= 27.1 cfs 150= 6 80 Q50= 37.1 cfs 1100= 7.71 Q100= 42.0 cfs Curb Inlet 13 • Worksheet for Curb Inlet On Grade Project Description Worksheet Curb Inlet-13 Type Curb Inlet On Grade Solve For Efficiency Input Data Discharge 0.40 cfs Slope 1.0000 % Gutter Width 2.00 ft Gutter Cross Slope 8.3333 % Road Cross Slope 2.0800 % Mannings Coefficient 0.013 Curb Opening Length 6.00 ft Local Depression 2.0 in Local Depression Width 2.00 ft Results Efficiency 1.00 Intercepted Flow 0.40 cfs Bypass Flow 0.00 cfs Spread 1.94 ft • Depth 0.16 ft Flow Area 0.2 ft2 Gutter Depression 1.5 in Total Depression 3.5 in Velocity 2.54 ft/s Equivalent Cross Slope 16.6667 % Length Factor 1.47 Total Interception Length 4.07 ft Project Engineer:TIMMONS k:\18809 blue ridge jdc\swm\inlet calcs.fm2 J.K.Timmons&Assoc FlowMaster v6.0[614b] 08/18/00 11:34:21 AM ©Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 Curb Inlet 15 Worksheet for Curb Inlet On Grade Project Description Worksheet Curb Inlet-15 . Type Curb Inlet On Grade Solve For Efficiency Input Data Discharge 2.20 cfs Slope 1.0000 % Gutter Width 2.00 ft Gutter Cross Slope 8.3333 % Road Cross Slope 2.0800 % Mannings Coefficient 0.013 Curb Opening Length 8.00 ft Local Depression 2.0 in Local Depression With!. 2.00 ft Results Efficiency 0.95 Intercepted Flow 2.09 cfs Bypass Flow 0.11 cfs Spread 7.46 ft Depth 0.28 ft Flow Area 0.7 ftz Gutter Depression 1.5 in Total Depression 3.5 in Velocity 3.12 ft/s Equivalent Cross Slope 12.5220 % Length Factor 0.81 Total Interception Length 9.89 ft Project Engineer:TIMMONS k:\18809 blue ridge jdc\swm\inlet calcs.fm2 J.K.Timmons&Assoc FlowMaster v6.0[614b] 08/18/00 11:34:34 AM ©Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 Curb Inlet 27 Worksheet for Curb Inlet On Grade Project Description Worksheet Curb Inlet-27 Type Curb Inlet On Grade Solve For Length Input Data Discharge 2.20 cfs Efficiency 0.90 Slope 6.7000 % Gutter Width 2.00 ft Gutter Cross Slope 8.3333 % Road Cross Slope 2.0800 % Mannings Coefficient 0.013 Local Depression 2.0 in Local Depression Width 2.00 ft Results Curb Opening Length 10.98 ft Intercepted Flow 1.98 cfs Bypass Flow 0.22 cfs Spread 4.13 ft Depth 0.21 ft Flow Area 0.3 ft2 Gutter Depression 1.5 in Total Depression 3.5 in Velocity 7.27 ft/s Equivalent Cross Slope 15.7923 % Length Factor 0.72 Total Interception Length 15.22 ft Project Engineer:TIMMONS k:\18809 blue ridge jdc\swm\inlet calcs.fm2 J.K.Timmons&Assoc FlowMaster v6.0[614b1 08/18/00 11:03:37 AM ©Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 1 Curb Inlet 29 Worksheet for Curb Inlet On Grade I Project Description Worksheet Curb Inlet-29 Type ' Curb Inlet On Grade Solve For Length Input Data Discharge 0.52 cfs Efficiency , 1.00 Slope 5.0000 % Gutter Width 2.00 ft Gutter Cross Slope 8.3333 % Road Cross Slope 2.0800 % Mannings Coefficient 0.013 Local Depression 2.0 in Local Depression Width 2.00 ft Results Curb Opening Length 7.32 ft Intercepted Flow 0.52 cfs Bypass Flow 0.00 cfs Spread 1.59 ft Depth 0.13 ft Flow Area 0.1 ft2 Gutter Depression 1.5 in Total Depression 3.5 in Velocity 4.96 ft/s Equivalent Cross Slope 16.6667 % Length Factor 0.99 Total Interception Length 7.36 ft • Project Engineer:TIMMONS k:\18809 blue ridge jdc\swm\inlet calcs.fm2 J.K.Timmons&Assoc FlowMaster v6.0[614b] 08/18/00 11:06:21 AM ©Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 Curb Inlet 31 Worksheet for Curb Inlet On Grade Project Description Worksheet Curb Inlet-31 Type Curb Inlet On Grade Solve For Length Input Data Discharge 1.40 cfs Efficiency 1.00 Slope 5.0000 % Gutter Width 2.00 ft Gutter Cross Slope 8.3333 % Road Cross Slope 2.0800 % Mannings Coefficient 0.013 Local Depression 2.0 in Local Depression Widtr 2.00 ft Results Curb Opening Length 11.19 ft Intercepted Flow 1.40 cfs Bypass Flow 0.00 cfs Spread 3.15 ft Depth 0.19 ft Flow Area 0.2 ft2 Gutter Depression 1.5 in Total Depression 3.5 in Velocity 6.13 ft/s Equivalent Cross Slope 16.4372 % Length Factor 0.99 Total Interception Length 11.26 ft Project Engineer:TIMMONS k:\18809 blue ridge jdc\swm\inlet calcs.fm2 J.K.Timmons&Assoc FlowMaster v6.0[614b] 08/18/00 11:35:12 AM ©Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 i Y Curb Inlet 33 Worksheet for Curb Inlet On Grade Project Description Worksheet Curb Inlet-33 Type Curb Inlet On Grade Solve For Length Input Data Discharge 0.80 cfs Efficiency 1.00 Slope 5.0000 % Gutter Width 2.00 ft Gutter Cross Slope 8.3333 % Road Cross Slope 2.0800 % Mannings Coefficient 0.013 Local Depression 2.0 in Local Depression Width 2.00 ft Results Curb Opening Length 8.77 ft Intercepted Flow 0.80 cfs Bypass Flow 0.00 cfs Spread 1.86 ft Depth 0.16 ft Flow Area 0.1 ft2 Gutter Depression 1.5 in Total Depression 3.5 in Velocity 5.53 ft/s Equivalent Cross Slope 16.6666 % Length Factor 0.99 Total Interception Length 8.82 ft Project Engineer:TIMMONS k:\18809 blue ridge jdc\swm\inlet calcs.fm2 J.K.Timmons&Assoc FlowMaster v6.0(614b] 08/18/00 11:36:34 AM ©Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 e L Curb Inlet 35 Worksheet for Curb Inlet On Grade Project Description Worksheet Curb Inlet-35 Type Curb Inlet On Grade Solve For Length Input Data Discharge 1.60 cfs Efficiency 1.00 Slope 10.0000 % Gutter Width 2.00 ft Gutter Cross Slope 8.3333 % Road Cross Slope 2.0800 % Mannings Coefficient 0.013 Local Depression 2.0 in Local Depression Widtt 2.00 ft Results Curb Opening Length 14.46 ft Intercepted Flow 1.60 cfs Bypass Flow 0.00 cfs Spread 2.48 ft Depth 0.18 ft Flow Area 0.2 ft2 Gutter Depression 1.5 in Total Depression 3.5 in Velocity 8.46 ft/s Equivalent Cross Slope 16.6389 % Length Factor 0.99 Total Interception Length 14.55 ft Project Engineer:TIMMONS k:\18809 blue ridge jdc\swm\inlet calcs.fm2 J.K.Timmons&Assoc FlowMaster v6.0[614b] 08/18/00 11:03:08 AM ©Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 -71 11 e4 -fizz, Ar Ir 10 2 TIA.,--, I L- 1 Ir SF St At _-- -- T - -- -�--T -- �---- --' --- --- -----�-'�-�----- - -' ----'~ --r-�-- ~ --- �--' - - -------'--�--- ---'-- � --- - ' / �� | � ` ���� - ��' �---------`-----� -----------`- -' --�--- --' - | . � �«� �" t nu 14 .00 . � ' --" - -'- - -- --'------ -�' - �� ����-~--` -- '-- --1 -- - - -' - - - _ - -- - _--- _j --� - -� ---7 - -- - -- ---- — -`--- -�--------�---------- / '--�'-- .� � — - - ----' - -� - J��'� - _ - -- - ' ----- --�--- -- AY� � 8 -r- - - '.- -- --- - ` - - ----� -� � � '--�--�-------- --- � - ---------- - - - - - - - - - - - - - '' - ------�--- --r--' -- ' �- _- - - _-- --_-- _'-- _- _' -_ '----_- - _ _-_ -' _ --_-------�--�__�_-_ � ---- � - -- --- ----- ----- -------- -- ---- -'-T—' --- - --------�—�-�-- -- �--� --- -- -----� -----`--'�--7-----T-�---�---'-�- '--7------ Virginia Department of Transportation—Pavement Design Guide ® 1996 Appendix IV Flexible Pavement Design Worksheet for New Subdivision Streets J This sheet is intended for use in conjunction with VDOT's Subdivision Street Requirements County All.eat ark a Date: Ai v,30 Zr1aO Subdivision NM Street Name eke k i d,.e 1u ve+'►',l e D 4ewh' foti l;1t $Ya. goad Developer giUe R;dq JUYw��t ®Gt nl'od. Phone: 21C—S8/1 ADT Projected traffic for the street segment considered,as defined in the Subdivision Street Requirements. CBRD Design CBR=Average of CBRT x 2/3 and modified only as discussed in the Pavement Design Guide. CBRT CBR value of the'subgrade sample,taken and tested as specified in the Pavement Design Guide DME VDOT District Materials Engineer EPT Equivalent projected traffic HCV Number of Heavy Commercial Vehicles(e.g.trucks,buses,etc.,with 2 or more axles and 6 or more tires). %HCV Percentage of the total traffic volume composed of Heavy Commercial Vehicles. RF Resiliency Factor=Relative value of the subgrade soil's ability to withstand repeated loading. SSV Soil support value of subgrade(SSV=CBRD x RF) Dp Thickness index of proposed pavement design computed by the Conventional Pavement Design Method DR Thickness index required,based on Design ADT and SSV,determined by Appendix II. Step` : DeteciTiine:Design :ADT Ste ?,.1 rmine::p°esi' n<Values: ADT INO • Sample CBRT Resiliency Factor (RF) %HCV=100 x HCV_ADT 9 °o # 1 5 Source Value EPT=0.20(%HCV x ADT) ,. 198 -# 2 Table 1 or # 3 S Appendix I • 20 x HCV Note:For # DME approved RF Note:For%HCV 5 5%,use ADT %HCV>5%, "# EP'DADT For preliminary designs,use the # lowest RF value in the equation Design ADT=greater of ..::- CBR, x RF = <S$ ,,�, I R8 ( 5 ) x ( 2, 5 ) = ADT or EPT � �Z, 5 :`Step 3: PavementDes1::.:n(Checkiiii..mp::".a.:.tebox:and'show ro osed:pavementdesi :.be . <) 8.. . ill?l?x' ::::.::::..:.... :...P..::.P ..:P.........:::.... . gn:...:.ac��r a (A) Limited to Design ADT s 400-Show pavement material notations and thickness from Appendix IV Tables A and B. 3 (B) Show pavement section as developed in the Pavement Design Guide. DR= /2. 5 (See Appendix III for material notations and thickness equivalency values(a)). i from Appendix II ................... Description of Proposed Pavement Section Material Notation Thickness,h a (a x h) Surface OCT 31V1-24 /,$ Z.2,f 3 315" Base Vtio'c i33t`r1- 3,0 2.25 • Subbase \IDA- 6. C Dp must equal or exceed the value of DR. Dp=E(a x h)= a 17 21