Loading...
HomeMy WebLinkAboutSDP201200032 Calculations 2012-04-16 THE MILLER SCHOOL NEW ENTRANCE Drainage Computations Albemarle County, Virginia JG 4 ' '� ' ! j3 , u,. . ° t, , to, ,..t..! ,„,, .. ,. . 'r,• :43' 1 1 1 ' April 16, 2012 Job No. 09-011-00 BRIAN P. SMITH, PE CIVIL ENGINEERING, INC. Golf Course Design • Engineering • Site Design • Land Planning 105 West High Street Charlottesville, Virginia 22902-5018 Tel: (434) 296-3644 Fax: (434) 296-2041 bpspe@embargmail.corn GOLF COURSE DESIGN • ENGINEERING • SITE DESIGN • LAND PLANNING The Miller School Drainage Computations 2 STORM PIPE AT STA 18+55: Time of concentration: a. Overland flow: 200 ft. , slope=10.5% (21/200) Tc = 12 min. (plate 5-1) b. Shallow flow: 93 ft. , slope=14.0% (13/93) V= 6.0 fps, unpaved (plate 5-2) Tc = 93/6.0/60 = 0.3 min. c. Channel flow: 96 ft. with 13 ft. of drop Tc = 0.7 min. (plate 5-3) Total Time of Concentration (Tc) = 12 + 0.3 + 0.7 = 13 min Area Number C Area (ac) CA Pavement 0.900 0.200 0.180 Grass 0.300 1.370 0.411 Weighted Totals: 0.376 1.570 0.591 Time of concentration= 13 min Period Intensity Peak Flow (years) (in/hr) (cfs) 2 3.70 2.19 10 5.00 2.96 Diameter: 15 in. HDPE Uniform Flow: Normal Critical Slope (ft/ft) : 0.0885 0.0049 Flow (cfs) : 2 .96 Velocity (ft/sec) : 12.0150 4.1783 Depth (ft) : 0.3184 0.7010 Depth (in) : 3 .8212 8.4126 _ Manning's n: 0 .0120 Z_3��z U'LZts�-1 fit, t r�� Hydraulic Radius: 0.1863 Wetted Area (sq ft) : 0.2464 Wetted Perimeter (ft) : 1.3227 Pipe Capacity (cfs) : 20.8186 CHECK HEADWATER: HW/D = 0.83 HW = 0.83 (1.25) = 1.04 Invert in elevation = 669.00 + 1.04 = 670.0 Max. elevation = 671 - 1.5 = 670.0; ok BRIAN P . SMITH, PE GOLF COURSE DESIGN • ENGINEERING • SITE DESIGN • LAND PLANNING The Miller School Drainage Computations 3 STORM PIPE AT STA 22+34: Time of concentration: a. Overland flow: 126 ft. , slope=6.3% (8/126) Tc = 11.5 min. (plate 5-1) b. Channel flow: 170 ft. with 3 .5 ft. of drop Tc = 2 min. (plate 5-3) Total Time of Concentration (Tc) = 11.5 + 2 = 13 .5 min Area Number C Area (ac) CA Pavement 0.900 0.090 0.081 Grass 0.300 0.870 0.261 Weighted Totals: 0.356 0.960 0.342 Time of concentration= 14 min Period Intensity Peak Flow (years) (in/hr) (cfs) 2 3.63 1.24 10 4.92 1.68 Diameter: 15 in. HDPE Uniform Flow: Normal Critical Slope (ft/ft) : 0.0329 0.0044 Flow (cfs) :1.68 Velocity (ft/sec) : 7 .1758 3 .4768 Depth (ft) : 0.3071 0.5202 Depth (in) : 3 .6856 6.2424 Manning's n: 0.0120 Hydraulic Radius: 0.1806 77 Wetted Area (sq ft) : 0.2341 _ W" CLI = 615 Wetted Perimeter (ft) : 1.2966 Pipe Capacity (cfs) : 12 .6934 CHECK HEADWATER: HW/D = 0.58 HW = 0.58 (1.25) = 0.73 Invert in elevation = 699.50 + 0.73 = 700.23 Max. elevation = 702 - 1.5 = 700.50; ok BRIAN P . SMITH, PE GOLF COURSE DESIGN • ENGINEERING • SITE DESIGN • LAND PLANNING The Miller School Drainage Computations 4 STORM PIPE AT CONNECTOR"B": Time of concentration: a. Overland flow: 123 ft. , slope=0.8% (1/123) Tc = 15 min. (plate 5-1) Area Number C Area (ac) CA Pavement 0.900 0.591 0.532 Grass 0.300 0.019 0.006 Weighted Totals: 0.881 0.610 0.538 Time of concentration= 15 min Period Intensity Peak Flow (years) (in/hr) (cfs) 2 3.40 1.83 10 4.70 2.53 Diameter: 15.000 in. Uniform Flow: Normal Critical Slope (ft/ft) : 0.0206 0.0047 Flow (cfs) :2 .53 Velocity (ft/sec) : 6.8178 3 . 9571 Depth (ft) : 0.4277 0.6456 Depth (in) : 5. 1320 7.7474 Manning' s n: 0.0120 Hydraulic Radius: 0.2376 Wetted Area (sq ft) : 0.3711 Wetted Perimeter (ft) : 1.5620 2 '` =� yrs Pipe Capacity (cfs) : 10.0442 CHECK HEADWATER: HW/D = 0.74 HW = 0.74 (1.25) = 0.93 Invert in elevation = 704 .50 + 0.93 = 705.43 Max. elevation = 707 - 1.5= 705.5, ok BRIAN P . SMITH, PE GOLF COURSE DESIGN • ENGINEERING • SITE DESIGN • LAND PLANNING The Miller School Drainage Computations 5 STORM PIPE AT STA 27+14: Time of concentration: b. Overland flow: 123 ft. , slope=0.8% (1/123) Tc = 15 min. (plate 5-1) b. Channel flow: 98 ft. with 4 ft. of drop Tc = 1 min. (plate 5-3) Total Time of Concentration (Tc) = 15 + 1 = 16 min Area Number C Area (ac) CA Pavement 0. 900 1.071 0.964 Grass 0.300 0.509 0.153 Weighted Totals: 0.707 1.580 1.117 Time of concentration= 16 min Period Intensity Peak Flow (years) (in/hr) (cfs) 2 3 .30 3 .68 10 4.55 5.08 Diameter: 18 in. HDPE Uniform Flow: Normal Critical Slope (ft/ft) : 0.1370 0.0047 Flow (cfs) :5.08 Velocity (ft/sec) : 16.0962 4.7206 Depth (ft) : 0.3518 0.8790 Depth (in) : 4 .2210 10.5482 Manning's n: 0.0120 Hydraulic Radius: 0.2081 Z 7 - ��iz i°e'LGC-1 ,,y /�7t�2" Wetted Area (sq ft) : 0.3156 Wetted Perimeter (ft) : 1.5165 Pipe Capacity (cfs) : 42 .1203 CHECK HEADWATER: HW/D = 0.87 HW = 0.87 (1.50) = 1.31 Invert in elevation = 699.00 + 1.31 = 700.30 Max. elevation = 702 - 1.5 = 700.50 ; ok BRIAN P . SMITH, PE GOLF COURSE DESIGN • ENGINEERING • SITE DESIGN • LAND PLANNING The Miller School Drainage Computations 6 STORM PIPE AT STA 30+86: Time of concentration: a. Overland flow: 36 ft. , slope=6.9% (2.5/36) Tc = 7 min. (plate 5-1) Area Number C Area (ac) CA Pavement 0.900 0.300 0.270 Grass 0.300 0.300 0.090 Weighted Totals: 0.600 0.600 0.360 Time of concentration= 7 min Period Intensity Peak Flow (years) (in/hr) (cfs) 2 4 .90 1.76 10 6.40 2 .30 Diameter: 15 in. HDPE Uniform Flow: Normal Critical Slope (ft/ft) : 0.1170 0.0046 Flow (cfs) :2.30 Velocity (ft/sec) : 12.3279 3.8346 Depth (ft) : 0.2617 0.6140 Depth (in) : 3 .1409 7.3677 Manning's n: 0.0120 Hydraulic Radius: 0.1570 Wetted Area (sq ft) : 0. 1866 �y / Wetted Perimeter (ft) : 1. 1882 7 ,° ✓e LDL.1 Pipe Capacity (cfs) : 23.9372 CHECK HEADWATER: HW/D = 0.70 HW = 0.70 (1.25) = 0 .88 Invert in elevation = 698.50 + 0.88 = 699.38 Max. elevation = 701 - 1.5 = 699.50; ok BRIAN P . SMITH, PE GOLF COURSE DESIGN • ENGINEERING • SITE DESIGN • LAND PLANNING The Miller School Drainage Computations 7 STORM PIPE AT CONNECTOR"C" : Time of concentration: very small area, 5 minutes used. Area Number C Area (ac) CA Pavement 0.900 0.090 0.081 Grass 0.300 0.090 0.027 Weighted Totals: 0.600 0.180 0.108 Time of concentration= 5 min Period Intensity Peak Flow (years) (in/hr) (cfs) 2 5.40 0.58 10 7.10 0.77 Diameter: 15 in. HDPE Uniform Flow: Normal Critical Slope (ft/ft) : 0.0104 0.0041 Flow (cfs) :0.77 Velocity (ft/sec) : 3 .8021 2.7311 Depth (ft) : 0.2773 0.3506 Depth (in) : 3.3271 4 .2070 Manning's n: 0.0120 Hydraulic Radius: 0. 1652 Wetted Area (sq ft) : 0.2025 �j Wetted Perimeter (ft) : 1.2260 - � ��C'�© I 7 .6rio5 Pipe Capacity (cfs) : 7 .1367 CHECK HEADWATER: HW/D = off the chart BRIAN P . SMITH, PE GOLF COURSE DESIGN • ENGINEERING • SITE DESIGN • LAND PLANNING The Miller School Drainage Computations 8 STORM PIPE AT CONNECTOR"D" : Time of concentration: very small area, 5 minutes used. Area Number C Area (ac) CA Pavement 0.900 0.150 0.135 Grass 0.300 0.140 0.042 Weighted Totals: 0.610 0.290 0. 177 Time of concentration= 5 min Period Intensity Peak Flow (years) (in/hr) (cfs) 2 5.40 0.96 10 7.10 1.26 Diameter: 15 in. HDPE Uniform Flow: Normal Critical Slope (ft/ft) : 0.0278 0.0043 Flow (cfs) :1.26 Velocity (ft/sec) : 6.2177 3 .1889 Depth (ft) : 0.2774 0.4478 Depth (in) : 3.3286 5.3738 Manning's n: 0.0120 Hydraulic Radius: 0.1653 Wetted Area (sq ft) : 0.2026 2 - Y2 V�Zc� !i7 - 571 fA5 Wetted Perimeter (ft) : 1.2262 Pipe Capacity (cfs) : 11.6682 CHECK HEADWATER: HW/D = off the chart BRIAN P . SMITH, PE GOLF COURSE DESIGN • ENGINEERING • SITE DESIGN • LAND PLANNING The Miller School Drainage Computations 9 STORM PIPE AT STA 37+08: Time of concentration: not including culvert or lake time a. Overland flow: previously from A to B Tc = 15 min. b. Channel flow: previously from B to C Tc = 1 min. c. Shallow flow: 197 ft. , slope=7.1% (14/197) V= 4 .3 fps, unpaved (plate 5-2) Tc = 197/4.3/60 = 0.8 min. d. Channel flow: 130 ft. 16.5 ft. of drop Tc = 0.8 min. (plate 5-3) Total Time of Concentration (Tc) = 15 + 1 + 0.8 + 0.8 = 17.6 min Area Number C Area (ac) CA From upstream areas 0.000 0.000 2 .410 Pavement/pond within loop 0.900 0.640 0.576 Gras within loops 0.300 5.880 1.764 Weighted Totals: 0.000 0.000 4.750 Time of concentration= 18 min Period Intensity Peak Flow (years) (in/hr) (cfs) 2 3. 12 14 .83 10 4 .31 20.47 Diameter: 18 in. RCP Uniform Flow: Normal Critical Slope (ft/ft) : 0.0897 0. 0291 Flow (cfs) :20.47 Velocity (ft/sec) : 20.1636 11.6306 Depth (ft) : 0.8380 1.4732 Depth (in) : 10.0554 17.6782 Manning's n: 0.0120 Hydraulic Radius: 0.4009 v _�jL I/cZ. c--t i _ /Y- 6 ic,S Wetted Area (sq ft) : 1.0152 Wetted Perimeter (ft) : 2 .5325 Pipe Capacity (cfs) : 34.0822 CHECK HEADWATER: HW/D = 4.0 HW = 4.0 (1.50) = 6.0 Invert in elevation = 648.50 + 6 = 652.50 Max. elevation = 662.74 - 1.5 = 661.27; ok BRIAN P . SMITH, PE GOLF COURSE DESIGN • ENGINEERING • SITE DESIGN • LAND PLANNING The Miller School Drainage Computations 10 STORM PIPE AT STA 17+14: Time of concentration: a. Overland flow: 200 ft. , slope=15.5°96 (31/200) Tc = 11.5 min. (plate 5-1) b. Shallow flow: 60 ft. , slope=26.7% (16/60) V= 8.2 fps, unpaved (plate 5-2) Tc = 60/8.2/60 = 0.1 min. Total Time of Concentration (Tc) = 11.5 + 0.1 = 11.6 min Area Number C Area (ac) CA Pavement 0.900 0.030 0.027 Grass 0.300 0.830 0.249 Weighted Totals: 0.321 0.860 0.276 Time of concentration= 12 min Period Intensity Peak Flow (years) (in/hr) (cfs) 2 3.93 1.08 10 5.28 1.46 Diameter: 15 in. HDPE Uniform Flow: Normal Critical Slope (ft/ft) : 0.2000 0.0043 Flow (cfs) :1.46 Velocity (ft/sec) : 13 .0191 3.3330 Depth (ft) : 0.1838 0.4833 Depth (in) : 2 .2056 5.8000 b Mannings n: 0.0120 �YfL eVI-0LA i c = it. f a.5 Hydraulic Radius: 0.1140 Wetted Area (sq ft) : 0.1121 Wetted Perimeter (ft) : 0.9839 Pipe Capacity (cfs) : 31.2965 CHECK HEADWATER: HW/D = 0.57 HW = 0.57 (1.25) = 0.71 Invert in elevation = 658.00 + 0.71 =658.71 Max. elevation = 660.60 - 1.5 = 659.10; ok Account ID:09-011-00/Storm Calcs.doc BRIAN P . SMITH, PE GOLF COURSE DESIGN • ENGINEERING • SITE DESIGN • LAND PLANNING DA at Sta 10+43 CB 2R Culvert at sta 10+40.43 Subcat Reach Pon Link Routing Diagram for Miller School Culvert at Ste 10+43 Prepared by Brian P. Smith, PE, Printed 4/18/2012 HydroCAD®10.00 s/n 05073 ©2011 HydroCAD Software Solutions LLC Miller School Culvert at Sta 10+43 Prepared by Brian P. Smith, PE Printed 4/18/2012 HydroCAD® 10.00 s/n 05073 ©2011 HydroCAD Software Solutions LLC Page 2 Area Listing (all nodes) Area CN Description (acres) (subcatchment-numbers) 53.060 65 Woods/grass comb., Fair, HSG B (1S) 4.300 98 Paved parking and roads (1S) 0.220 98 Water surfaces (1S) 57.580 68 TOTAL AREA Miller School Culvert at Sta 10+43 Prepared by Brian P. Smith, PE Printed 4/18/2012 HydroCAD® 10.00 s/n 05073 ©2011 HydroCAD Software Solutions LLC Page 3 Soil Listing (all nodes) Area Soil Subcatchment (acres) Group Numbers 0.000 HSG A 53.060 HSG B 1S 0.000 HSG C 0.000 HSG D 4.520 Other 1S 57.580 TOTAL AREA Miller School Culvert at Sta 10+43 Prepared by Brian P. Smith, PE Printed 4/18/2012 HydroCAD® 10.00 s/n 05073 ©2011 HydroCAD Software Solutions LLC Page 4 Ground Covers (all nodes) HSG-A HSG-B HSG-C HSG-D Other Total Ground Subcatchment (acres) (acres) (acres) (acres) (acres) (acres) Cover Numbers 0.000 0.000 0.000 0.000 4.300 4.300 Paved parking and roads 1S 0.000 0.000 0.000 0.000 0.220 0.220 Water surfaces 1S 0.000 53.060 0.000 0.000 0.000 53.060 Woods/grass comb., Fair 1S 0.000 53.060 0.000 0.000 4.520 57.580 TOTAL AREA Miller School Culvert at Sta 10+43 Prepared by Brian P. Smith, PE Printed 4/18/2012 HydroCAD® 10.00 s/n 05073 ©2011 HydroCAD Software Solutions LLC Page 5 Pipe Listing (all nodes) Line# Node In-Invert Out-Invert Length Slope n Diam/Width Height Inside-Fill Number (feet) (feet) (feet) (ft/ft) (inches) (inches) (inches) 1 2R 604.50 602.20 96.0 0.0240 0.012 48.0 0.0 0.0 Miller School Culvert at Sta 10+43 Type 1124-hr 10-yr Storm Rainfall=5.60" Prepared by Brian P. Smith, PE Printed 4/18/2012 HydroCAD® 10.00 s/n 05073 ©2011 HydroCAD Software Solutions LLC Page 6 Time span=5.00-30.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method Subcatchment 1S: DA at Sta 10+43 Runoff Area=57.580 ac 7.85% Impervious Runoff Depth=2.32" Flow Length=2,296' Tc=27.0 min CN=68 Runoff=120.80 cfs 11.121 af Pond 2R: Culvert at sta 10+40.43 Peak Elev=610.48' Inflow=120.80 cfs 11.121 af 48.0" Round Culvert n=0.012 L=96.0' S=0.0240 '/' Outflow=120.80 cfs 11.121 af Total Runoff Area = 57.580 ac Runoff Volume= 11.121 af Average Runoff Depth = 2.32" 92.15% Pervious = 53.060 ac 7.85% Impervious =4.520 ac • Miller School Culvert at Sta 10+43 Type 1124-hr 10-yr Storm Rainfall=5.60" Prepared by Brian P. Smith, PE Printed 4/18/2012 HydroCAD® 10.00 s/n 05073 ©2011 HydroCAD Software Solutions LLC Page 7 Summary for Subcatchment 1S: DA at Sta 10+43 Runoff = 120.80 cfs @ 12.22 hrs, Volume= 11.121 af, Depth= 2.32" Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Storm Rainfall=5.60" Area (ac) CN Description * 4.300 98 Paved parking and roads 53.060 65 Woods/grass comb., Fair, HSG B * 0.220 98 Water surfaces 57.580 68 Weighted Average 53.060 92.15% Pervious Area 4.520 7.85% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 14.0 200 0.1750 0.24 Sheet Flow, Point A to B Woods: Light underbrush n= 0.400 P2=4.00" 5.9 682 0.1480 1.92 Shallow Concentrated Flow, Point B to C Woodland Kv= 5.0 fps 4.3 407 0.0983 1.57 Shallow Concentrated Flow, Point C to D Woodland Kv= 5.0 fps 2.8 1,007 0.0377 5.95 26.79 Channel Flow, Point D to E Area=4.5 sf Perim= 6.0' r= 0.75' n= 0.040 Mountain streams 27.0 2,296 Total Miller School Culvert at Sta 10+43 Type 1124-hr 10-yr Storm Rainfall=5.60" Prepared by Brian P. Smith, PE Printed 4/18/2012 HydroCAD® 10.00 s/n 05073 ©2011 HydroCAD Software Solutions LLC Page 8 Subcatchment 1S: DA at Sta 10+43 Hydrograph 130-/ I Runoff (120.80 cfs I 120 Type II 24-hr 110 10-yr Storm Rainfall=5.60" 100- Runoff Area=57.580 ac 90 Runoff Volume=11.121 of , • 80 Runoff Depth=2.32" g 70 Eh:70 Flow Length=2,296' LL 60- ,0 50 0 Tc=27.0 min - � 40- 0 CN=68 30- / 20 ___.. ..:;0 ///�/,/s°ss°i�.a./../lIJJ%�I'''%ri///t/' ., rrW►s+iti//'i/f��i.r�/i�r//f, 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) • Miller School Culvert at Sta 10+43 (Type 1124-hr 10-yr Storm Rainfall=5.60 Prepared by Brian P. Smith, PE Printed 4/23/2012 HydroCAD® 10.00 s/n 05073 ©2011 HydroCAD Software Solutions LLC Summary for Pond 2R: Culvert at sta 10+40.43 Check headwater: 617.28- 1.5 = 615.78; okay [57] Hint: Peaked at 610.48' (Flood elevation advised) Inflow Area = 57.580 ac, 7.85% Impervious, Inflow Depth = 2.32" for 10-yr Storm event Inflow = 120.80 cfs @ 12.22 hrs, Volume= 11.121 af Outflow = 120.80 cfs @ 12.22 hrs, Volume= 11.121 af, Atten= 0%, Lag= 0.0 min Primary = 120.80 cfs @ 12.22 hrs, Volume= 11.121 af Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 610.48' @ 12.22 hrs Device Routing Invert Outlet Devices #1 Primary 604.50' 48.0" Round Culvert L= 96.0' Ke= 0.500 Inlet/ Outlet Invert= 604.50'/602.20' S= 0.0240 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 12.57 sf Primary OutFlow Max=119.74 cfs @ 12.22 hr[HW=610.42; \(Free Discharge) L1=Culvert (Inlet Controls 119.74 cfs @ 9.53 fps) • Miller School Culvert at Sta 10+43 (Type 1124-hr 2-yr Storm Rainfall=3.7 Prepared by Brian P. Smith, PE Printed 4/23/2012 HydroCAD® 10.00 s/n 05073 ©2011 HydroCAD Software Solutions LLC Summary for Pond 2R: Culvert at sta 10+40.43 6 ; [57] Hint: Peaked at 607.14' (Flood elevation advised) Inflow Area = 57.580 ac, 7.85% Impervious, Inflow Depth = 1.02" for 2-yr Storm event Inflow = 48.67 cfs @ 12.24 hrs, Volume= 4.892 of Outflow = 48.67 cfs @ 12.24 hrs, Volume= 4.892 af, Atten= 0%, Lag= 0.0 min Primary = 48.67 cfs @ 12.24 hrs, Volume= 4.892 af Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 607.14' @ 12.24 hrs Device Routing Invert Outlet Devices #1 Primary 604.50' 48.0" Round Culvert L= 96.0' Ke= 0.500 Inlet/Outlet Invert= 604.50' /602.20' S= 0.0240 '1 Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 12.57 sf Primary OutFlow Max=48.34 cfs @ 12. HW=607.13' (Free Discharge) L1=Culvert (Inlet Controls 48.34 cfs 5.52 fps) a) . v) P P. N N N Fr 00 F.' bD 5D ' ti) ' 0D = un Q . � ;E � •, u ;� u ;� 5 5 (gout} c en o gldoa r; M M -t 00 r---- m crs —1 a N 00 0 0 -. .� • O 00 ,-. 0, ,- N C "t M ,-D- r---: C CC C w a C w V N ' v N c) 0D I7" a ~ 0.; = ha ¢ � P-1 U N a c r P C H L1, II N M H W ❑ P4 CY ..- O •-� N 00 O, COIIW � > M M M IAA O C O O C MOTI V -t -t -r N N co o adolS o — 0 0 0 o c u o Ez. U u u u LI • ^ if) N Cl 00 6j V) N 00 Q1 M O O O -- U = C C 00 00 M, yam., 0—, ' "t N O O' 00 v, kr; -t 4 U U C 00 DO V) M ^t [� C M 6 .= H 'n C O ‘,6 O \.O O Ir--: ct U oDV C - _ NC N eiD" d O O O C O L.) ON V, M M '.IDEA C C C C C © C C O O OON , O OOpp C-1- O3LC O C O C O C C O C O C C C C C O O C O li 41 0 Q u C WI N N i/) 'J, N O M M• 5 U kr-) C 't O C ,. O C .-. C O �O O 6 © O C C C C C O O O --I 00 — C —, C' C' — 00 C UCr' O C C' O C C' O C C' C O C 0 0 C o C O O O C C C O C i C 0 C o C oo O M -t o a) N H < M M M M 17/1 Q dH W H O C C O O M -} v, C M M M M M N N V] N ' P. N hr, N N F„"' g ,• g W 'a __ W - _ W •• __ G _ W , M M ci) ,..) W En W En a W , W d ) u 3 Oyu!) in „t O, 1• O I INN" M 4 4 cr,i t i MC1o .-i N O v ,ri W P. ofd. W N CID N tx ,n = _ 41; M = �1 a �. act,:: , t. W W = ' . o H W < N •'. (� U N O C N U 4...., M M P. WQva O �l ,-, r} \D N Ct W �� N N N M EIA C C C C O MOTIV -t -- 't 4 r r 'NIJ/ 00 r.i 00 N -I-� r c .CC- OdoIS o C o0 0 - o 0 0 � a) c U o w U U U U U U a -rt, 00 00- Mt C' v O o -, C ,-, U O N v F" ti' �`; N 00 �p (-~ M M M M co., U O 00 00 r 0 kd N -6 't o o 00 00 N O ,� •00V .-. N M -, M kr, O O O C C C P4 (75 4N C, .JouI -' -, o _, N ,"'ti O O C O C C C C O ^ C C C� 00oooo cO c4 U C C C © c C Cc O c o 0 0 o c o 0 0 o C o 0F o ii 4 Q U co -r r- cr.c M o 3 U r; "" rn N C c ^-1 C 'n - eq kr) '-, O M .-. C O C O O C C C N C C C O C' -1 C' '0 N r N --- C' C r-- C" N 3 N -, N ,--0dU C' C 0 0\ O C - C O rn - 0 0 C' O C C' C O C O C C O O o c O C O C O C C N c C kr) 00 O 0o C N C C 1r, ¢. N - •H i N N N p,N Q Q H C C C ^ -I- c.", N N N N N N 4 by N bA M f" W M M .= Mi "a. M = M ,-r W h a U a U a U a U .,.1 U (yaui) N 'n 71- -t 00 p iildaQ in a' N N GO rn 'n N a en a T ^, N tr, 't Irn 00 00 00 00 1-:1- N N --- O O' Q� W a O a W N A N w c CY Q M r. E= 0.idM Q o U hUh a. 11" F W = W c ; 1111IIIIIII1 III III III III 1hIIIIflhIIhIUIIhIhhI MOJV cn o (WU)adois O 0 ,O ^ o 0 U O ' N .©.......©. -mini n .© n ill©. N.©. N A �0O0 pO d C - .-. . N M1 emsU 1 M M T On 00 r--- U;" ,., M M M M en; ,NZ'� j ��V pN Nt T 000 Np� C p —cV) N N rU -nu' N O O 6 vD C C C O O O O O C O C O3UC -CCOM C O C co O O,i- C O O C O O C C O O O O O p�O H O O C O C C C C C C C O C 4 II U 00 In C (U M eN r O vM 00 C -r, :r1 O N. iU 01 M 00 C r °. 'n inN cn in -. -t .-, "F cC(,CC✓ o O NC O rO O N O C p C C N C C N .-i Cn V] ..i. N N N N :•-i ,--1N ^, N - N - N 0o c o O o C C O o o ° O o 0 a NN C O O O O O O O OOpp o•N 'rt C p C 0 0 - O O o 0 o O N H ¢ N .moi • , -M+ .N. _, 6 --‹* f--, c .n . v) on ,_ - 5 — (tioui) r., uidoQ x o r' o kr, a M 00 00 - y .r a a o W o = ,� N Q U 0 D N OA O Cl. N CY •E ii a a COd P -t CI U N N U a H H W piq o 6 o W II `v vi -rill r O O r MOTIY TA r o c - O c (ijiij) °dots — O o O U 0 U o w rn U a N o dM * U 4 U M = r U tU U tr.) Z ,S2, H O p .00V N CA en O CJ JDUI O ' O 'OJ -t N cin ..-,1 O O O U O O \o • H O O I —+ N M d' O M "1" C O 3 U OA ^' O O O -. C., ✓I .. ,_, ---- O p 0 0 0 O p O O O. C.) 00 O M N �• O ate. Qbc d F--' .4 H O V] O