Loading...
HomeMy WebLinkAboutWPO201700016 Calculations WPO VSMP 2016-07-25 PROJECT MANAGEMENT sHimp { CIVIL ENGINEERING 'ya LAND PLANNING ENGINEERING ' October 2, 2017 4%. O�Lj Ms. Emily Cox . z Albemarle County Community Development v ► • , - �. y 401 Miclntire Road, North Wing c• O.�5183 Charlottesville, VA22902 �O ION-1/7 4 Regarding: Old Trail Blocks 5,20, &21 VSMP Plan WPO-2017-00016 , ,s'SIONAL 6 1M Dear Emily, am Enclosed is the stormwater management packet for the Old Trail Blocks 5, 20, &21 VSMP Plan. All development in Old Trail is governed by the Old Trail Stormwater Master Plan for WPO compliance. This .. Master Plan was originally submitted by Stantec to Albemarle County on April 14, 2015 and later revised on February 5, 2016. The latest approved version is dated April 4, 2016. The Master Plan is grandfathered into Virginia Part IIC regulations, and as such, biofilter sizing, nutrient loading, and runoff requirements were .r designed to these standards. Selections of the Master Plan have been included in this booklet with highlighted WPO requirements for these blocks. It is the intent of this booklet to demonstrate compliance with the Master Plan, and therefore, with the County's WPO ordinances and the DEQ Part IIC regulations. • This packet also contains the runoff calculations for the Stage II Sediment basins. Design Goals The Old Trail Master Plan dictates two design goals for stormwater management: 1. Treat required phosphorous nutrient load produced by development with biofiltration 2. Manage the 2-and 10-year post-development peak runoff rates to below predevelopment rates Design Results APPROVED by the Albemarle County 1. Nutrient Load Reduction Community vel ment Department Required =6.07 lbs/yr phosphorous Date G/28/z°'V Achieved =6.16 lbs/yr phosphorous File 140Zei7000'1 To achieve this requirement, 5 biofilters were provided to both treat nutrient loading and detain site runoff. Biofilters A, B, and C were designed to provide 50% nutrient removal, and Biofilters D and E were designed to provide 65% nutrient removal. 2. Peak Runoff Rate Management Detention was provided within the biofilters through a combination of underground gravel storage ais and surface ponding storage. All biofilters were sized to provide the required surface area for nutrient reduction and to provide 1.0' of freeboard during the 100-year storm event.All post-dev "` time of concentrations were assumed to be 5 minutes. This was chosen because the majority of the managed site is impervious cover and this figure dictated the most conservative designs for peak flow rate management. Storm Events and Associated Peak Runoff Rates Pre-Dev Post-Dev 2-Year 9.80 cfs 8.64 cfs 10-Year 28.03 cfs 25.57 cfs 100-Year 70.87 cfs 64.35 cfs The peak flow rate from each of the design storms will be successfully reduced to below the predevelopment .. levels identified in the Master Plan. 3. Stream Buffer Disturbance The majority of buffer disturbance was for stormwater management purposes. No structures are located within the buffer. To mitigate construction disturbance, seedlings shall be planted within the 100' buffer zone at a 1:2 disturbance: planting area ratio due to the lack of available replanting space. Per County Mitigation Option 1 B, for every acre of disturbance, 1,210 hardwood and/or pine seedlings shall be planted along the stream. The disturbance with this buffer is 1.76 acres, so a total of 2130 seedlings shall be +� planted. This will preserve the wooded area around the stream and allow the wetlands to maintain its original function as a natural runoff treatment area and a home for wildlife. Please note that this packet is intended to be reviewed in conjunction with the VSMP plan WPO-2017- 00016. In particular, Sheet C8 of the plan shows the permanent full size SWM plan and will assist in locating the structure numbers referenced in the calculations. If you have any questions please do not hesitate to contact me at: Justin a( .shimo-enqineering.com or by phone at 434-227-5140 ext. 3. ■r Contents: .,, Stormwater Management Overview: Pre-Dev Land Cover Map Pre-Dev Old Trail Mater Plan Sheets Post-Dev Land Cover Map Master Plan Post-Dev Design Sheets Post-Dev Drainage Area Spreadsheet Post-Dev HydroCAD Calculations Summary Stormwater Quality Calculations: .. Post-Dev Master Plan SWM Quality Design Sheets Post Dev BMP Map Biofilter Design Sheets Mil Stormwater Quantity Calculations: Inlet Drainage Map VDOT LD-204 Inlet Sizing Chart VDOT LD-229 Culvert Sizing Chart VDOT LD-268 Ditch Sizing Chart Post-Dev HydroCAD Calculations Sediment Basin Calculations: Sediment Basin HydroCAD Report Independent Reports: Excerpt from NRCS Soils Report NOAA Precipitation Report Stormwater Quantity Calculations: Inlet Drainage Map VDOT LD-204 Inlet Sizing Chart VDOT LD-229 Culvert Sizing Chart VDOT LD-268 Ditch Sizing Chart Post-Dev HydroCAD Calculations MIA MN AUB NMI MI T ♦ w��'+rte j./(( ..... ............... / i / ! U : ( ` \ -- I 1 r \ x i t A. \��� - / • r I \\ '� N r" v _ // i rr ` `_ A \ \ V vvI ES � - —� / 1r II I / .. �� `\y�__^1 ,// \`, \\\ .j 1. \\'� I I I I I I I I I I I♦ i t --- i' !rl \ �i 47/ CI / ,� 11 * II �11 �1 1 + ! I / .11 l ��I • / \ , / I . \\l1 III . %�. -- � / ' /� I • `w �i1 ; aim II Id ;\_____ II r/� II � IYiI \� I "I I III h I 1 ill /,' /'/.it\`\\•k\\` \�� �`, \\ \\`\ •\`\ \\ `\ \\\`_ \`\ ` - \/ ,,, I • ♦ \ t 1 t I I r / i' .. r /�\ \ \ \ < 1��,_4 _ ^tet \ \ / �\ \ \\ i I i ill I/ 1 ,../ 1 i \\ ` ��� i `" ----'�1 c-..-.. -..-. z.. •- ` \'N.\ \`\ \\` `, - x '\ I , I I //Hi i I, Ir/'----,---''',1\ \\ \ `\\ `\ •,,: , ` � , I 1 Q \ cD Ii rrrl I ! C I:r i tliIt \\\ ♦ \ 1 r l! , 11! 1 1� `` \` � \ `\ `\\ j f 1 1 I t 1 i 1 1 / j .\\\„ \ \\ `�� ,.-----,----..--,-----:.---7--,---, `\ t/ _---____....___i` ��* - \ \ ♦ 1 11111 it i, fl, ii1 / \ \ ` \ \ -.-S'..,-.'s,\`, \\` `♦ \ ` \ `♦ `, `, \ 1 i t I t ii tU 1 1 , i _-'• / )„...••,-- / \ r \ I \ \ \ . \ \ 1 , \ ' `\\ ,i • ```. \\ ```.`` \`♦ \` \ \ . 1 I I i{ if + f ' 1 /' ! I i , ! I \ \ \ , 1 \ V \. `\ \ • 1 , 1111 I+ 1 I 1 1 rY� 1 \ t 1 \ \ \ \ \ , , , , \` \ \ ` \ 1\ i 111 1 1 1 ,rF I \ , - / I 1 \ \ \ \\ \ \ \ \ \ • \ ��I-r.._- - \\`.\`\ `♦ \\ \ \\ i \\%\III I 1 i I 1 .:'`'. ---� 1\ r= ' \ \ \ ; \r 'I \ \ Q L . \ `. `♦ \ \ \ 11lrf11\111 + , Ir / L 'r: l 1. q \ I , /,' I / 1 1 i i�� i \ L -_`. ```' `. \ `\ ` \ . \ r 1 / t III, I 1 , r r , r \ I r I , I 1 `.�\ `� \ `�� - r 111\\ 1 \ \ 1 t r •J' 11/4':.. ..�•..�..7 1 i i - i t r rI i � \ \ ff�1 1 ■ ` \` . ` \ 1 r I i 1 1 1 / 1 r / t r # \ \ to i / ••t ` � � \ ��`♦`♦ `♦ s�` \-1 I r t \\\ { i + \ \\` ! I r I * / • , r r { � 44 1 , 1 — `\ . .„ \ \ \ \ \ \ \ t , 1 I 1 1 ) 1 \ { • 1 I r / /_ . / , \ \ \ 1h' 1 , i 11 1 , I •--7--= `--- '' \\ ` \` `\ `♦\\ \`\` \\ r i i I i i t { , 1 \I . ..\\ I � r / / 1 , 1 \ .� Cl t 1 L1.1(D 1 I r / ♦ . v r 1 v v la) O r I 1 t r I. \\`\;.`\``\\ \`` / f i i \ i i { i 11\•\ ;? l / r I \ '\ , C\\ N 1 r — ` _ \`\ \ `�`� `. I i r I i t•0. • t Q Orr 1 1 I t \ ( \, N'I r r 1 ' t 1 1 i ``\ , \.. `. \`\ \ \`♦\`\\` \\�`•\,... `''---' r I t ' i i i ' \ I i i a 1 \\\ `. • \\ \ \ 1 1 , \ \\ / / r'ai L .._ \... •\•„\ `\ `. ``` \ . , i 1 \ + i I i '1:'1 ` \ \ \ \ \ \ \ \\ r \\ i \ \♦ `\ .♦ 1 rt / • \ \ • r tt { 1 \ • \ \ r r II1 \ , I i .` . \ \ Al \ `.� `.`.\\ \ `., \ \ \ `. - I 1 1 ) - \ \ \ .� { ,I *\I I * hIrl l �\ 1\... i / \ ���-��``\\\\ ``; `\ \\\\ `\;\. \ \\.`\`s -..,...I /// // I 1 i I ) \ `♦ `.\\ .`\\`` \ it f D \` \ \'� I�� {•\� I T `' .\``. ♦ \ '\\ �. .` . ` i1 r I 1 1 1 '•.. \ \`.\ \\ \ { I r , I -0 \ \ \\ \ `� - / (/ ._ �•.;, \\ \ \`\\\\ - \\ ,,`` `. `` \ '----' / i r 1 , 1 ' 1. \ \ \\ \ \ t I 1 1 1 \ \\ \` \ \ 1/ . — N. N N N N ...., / il it ) / •:, \\ \ \ Itt Ili .11t I‘1 \ Itt 'C.). 0.0 \ \ \X\ .\\ •-\`:\ \\l \\ \`, '1 11 1 \'\\♦ `\ \\'''':''::::-:-.."--' .\ `\ / rr1 i I I 1\\\\, \\`\ ,\ `\\``\ '1 1__Is 1 11 \\\ Cn\\ \\ \\ \\`♦ ``` `. :/' j \ \, \``\\\' \ \',\\ \\11\ \ `\ _ \\ `'. 1 i I r i . .\\ \\\ \\ \\ \ \ y \\ I\ , cD Q \ \\\ `♦\ `. I i � / \ 1, `\ ` \ 1\\I 1♦'�`. \.----``.\\ .\\`\ `♦ `\. ` i ..\;. \ \` \•„\‘ '...,'„ �\y`•``'.......'"'• ` . \....•'••,, \�\ \``. `•. \ • j' - '11 I it ' I I /t it 1 \\\ `- - ,• \• \ \` \`♦ `C_ _3-——— \ /c i-' \` \`\`�\ `\ `\ `\�(7 `1+\ \\ `.` ♦` `♦♦ 11"-- ' /.. • • *--------- -...`.‘•\\\. \ \ 1 ♦ . IIS \ \`` ---- -- \\\. .` \ \ \• :/; \ \\ \\ \ \\ \\ \ N. \` \ \ \\ -----11\\ ' .\ \ \`\ �` - `. \` �\ .\ \ N \ \ / _ \ \ N.,\\ \ \ \ 4 i 1 \\ \\ \\ ♦\ \ \ \\\\\‘ \\\, \ \ \\\ ..1‘. .. :N `\\ \ \ \ \ - \\ ``\` 1 C/1 H' r' t \ v A V ♦ A A, 1 1 1 1 1 t i .. . .$ •• , A + 1 CD 1 n •Z\9. ) \ \ \ \ \ `�\\i\� Iii" I s 1 .t Q 1 \ 1 ' I U ` .. -•- 1 \ \\ \ ` ` 1 +I 1 '\ !\11 '1111 f /.\\-'7D A v ivvAx• \ \III i ' 111iit 11111 1 1 I • .1- • +1 vv \ \ ' "- x� `.\''s '` _ I \\\ ------�/1 \\I \`\ \ \\\• \i 11 i i 111ii1 hill i i 1\ I ' :\\, •N \\`\\ \,� -\\ : �` r' �-.. A ` \II\I'i 1 +I11iI hill i ' •` ,11 v v ' \ - -v tm Aj II t I .I• �. Cr) rJ p k7 Z7 D En I \ \ \ \\ \+ i\1\i\I\\\\\I\'\i 1 I I I It 1 1 1 1 i: ;♦p .\\ \`\� \\`\\\\♦`\\\ \\ `\\ i 1 N c -3 D r+ -I \ i 1 \1 1 , 1 i .I:\ \ \ \ 1 11-171 �\ ZV • 7 o I I (D Q fl (D \ til\1\\1\\\\\I 11\'\',1 \ I I _ a• • ` `\ \\ 111 \ \ '! \ I(' 0 p O E I `$ O N D ca \\ I\ \ \\i I 1,0\,\\\\\'}\\\ 1 \ 1 11 ,``C:: \\ \\ i- \ `\ \\\ \ ' \ i m O II N 0 CD A l vvvI1+ 11�},t?'/\ \ y 1 i t 1 v v ti r� I 1`_ C C co U < I \ \ "/\\ \II :\ i O •\`• ' \ \` i I /`. 11�T'-1� In (n V N • n C� , I l ,,\\,,,,,,4,, \ I i ♦ t \ \\ \ 1 / 1 I D W O 00 • m O p N _ ) i\ / \ \, 1 1 -. 2 . .r \\ ' \ -�\ \ t n , CD Z7 O • Q Z -p �2 % / 1 i\\\\\\\\\\ \ \ -1 1 '1 1 * \ ' 1 6, 1 f z _ OW O w d 3 K p � ---- / / I ; I I\\\;\\ \ \ a G t\ \ `\ \`\ i' 11 ' �/ . 1 i $_" 0 O 0 In p •. CD 3 p 0 -_---- -"— , / !r i \ , \\ `,1 \ \ ,�. ,\ \tet `. \!/i"r 1 \ `F` ': (^O, I—. 0 �, (!) CD fA (A ---- '.' - i / / / 1 I :\, ,,\N`\\•\,•\• ` \`. i r r 1 7N,, /// i ,._.._--:NOOn p --- -��/ /,ri r`/ "1\\\\`\`\ / \ \`1111/ .-r O C7 O -./ . . lit 1 'I 1 I I I , \ • • Il/I, / \\\ ///-.-------M 1 / n Q O _ _ ��/.' -- //'/ I r r i // 111 t11 I l l ii V / \ \ x \ \, .\.„,\\,,,‘: ,\\\\ \\,. N.......,•„1, \ „ „,\ „ i 1 , f...„ , \\ X \ \X\ >,. \ a 0...,,, ‘‘.„ '''‘,„„.. ."'...,1/4 '`.,,\ '----..., 1 ; o -- ----- - // , r r r I e.r h I/ -i/ < fl A CD p Q j/i • / •'/- - ''/�/// / j .�/,i/111 11 (— \. /r ...t......„..„..., ' -'�r/r%� (n O o Q 2 '--------- -,� ,-',//,///rI\ %" !'trill Z Sil - Lc CO7 -/ , / r \- D O p — , ---- -w / 1 \ .N O -p ' -------- /- ---- ' 1 � \ D'-- . . \_-, r I \ ` ± i . / ' / ' % ; 1 \ r ' ' ' D N r• STORMWATER MASTER PLAN UPDATE INTRODUCTION April 4,2016 1.1.3 Applicable Technical Design Criteria Over time,various components of the development have been implemented under former '"is Virginia Stormwater Management Program (VSMP) design criteria, or Part IIC of the more recent VSMP regulations. Based on more recent discussion and guidance delivered via letter from Albemarle County dated August 6, 2015 (provided under Appendix A) Part IIC technical criteria shall apply to Old Trail for two permit cycles, or until 2024,provided CGP coverage is maintained. ..� The following summarizes the overall SWM Master Plan approach,with the following areas of focus by the Old Trail Team in accordance with VSMP Part IIC technical criteria: 1. Water Quantity: The prior project-wide nodal analysis which reviewed flow peaks at various property locations beyond BMP outfalls has been substituted based on our understanding of the County's wishes. This change in approach has been implemented conservatively such that flow attenuation leaving areas of development for the 2-year and 10-year storm events was compared on a per-BMP basis. 2. Water Quality: A comprehensive project-wide approach centering on bioretention filter placement and design in accordance with refinements to the GDP Sheet 3 Plan. Focus was placed on compliance with VSMP Part IIC technical criteria primarily through proposed on-site treatment in effort to reduce the treatment burden on Lickinghole Regional Basin to the extent practicable. The performance-based approach was used to •• provide a succinct approximate accounting of master planned crediting of treatment (in pounds of total phosphorus per year or lbs TP/yr) for on-site practices versus that which may be needed from off-site treatment options. Note the design team has targeted an approximate minimum of 75% of the required water quality compliance treatment on- site, which is consistent with current VSMP regulation regarding use of off-site compliance options without a Maximum Extent Practicable (MEP) demonstration to the VSMP Authority. We feel we can achieve greater on-site treatment than this level on an overall project basis. Overall Master Plan water quality compliance worksheets for the targets are provided in Appendix D. More discussion on these aspects is provided below. 1.1.4 Relevant Guidance by Albemarle County In addition to state project compliance,Albemarle County has provided additional clear guidance related to project goals. Per an email from Mr. Mark Graham (Friday, November 21, us 2014 4:36 PM)to Mr. Dave Brockman, the Old Trail Team noted the following(including Figure 5,which was attached to the email): Dave, To follow up on our Monday meeting, Glenn and I have met with Zoning and Planning to make sure we are staying consistent with the approved zoning plan and stormwater requirements. In doing this, we've tried to set the limit on what is expected and what we can CO Stantec mg u:\203400430\05_report_deliv\deliverables\swm_mp_v3\rpt_swm_mp_v3_20160404.docx 1.9 11� m .'• -omi O .* c D .'• G • m o • 73 `.e. 0 I ..•• a X_ � ' • o_ O ZIzi ml � • ! • • • O • o U) O i I . D • --- • m ; r a m e i 'Fn -r1 i I m i a, m = i _ e N o. O ! o O • i o •• D _ G n i • - = i m • p • m • i r 3. rn \ o • • F + a 3 1 ok., 4 0.lit ot,i r ii,., . .,, . rn 1:1 0 4. • O ) �'`F^f� zy i op% it tk,.,,e3 - ( :--2 I • r E o z h t • ir ' . I G' S44JJii�� y Cn CA r, jrf P 0 1 SNO / ti .1 RI r ,,- -F-- 'r? D « Q ' /� V 31 M A %,.� , .`- ice, 1 m 0 .4 ....::::::',:::::,,:n::• / Ci ; s�r oVC47 a S«✓J • • • J .......:. . e: )4 jet,•Iiik 7 Jit; ? W I '„ ° % • ‘2 / ) • ) . 4„ • te It .,,,, * • •• i y s litCi • — ri•r' • ••<-',• ) • //,. *: a)' ...- * //,=------------ J y O • „ yf � r '•/,,,,,_-- _ - r:/ ... SGC �. y � •!�•. CO aw. jj¢ • G yl 'w. y/�/''(�t' �!1 ICy n^ w AVS I`3. Z n Q• a•''+�.._..F.F•. t • ...=� 11w% • ; C'. f V'�/. '. .'��'n.'.,1, 4'.**'-..'":':.:' � {'3`•� •i j CO m 0 0•• 'd^ l t • \t,,,,, +{•('moi W `j �•A7 ;t014 y� '�� {�Q +++ '�• • A u� • wQn _d 1 iv s`• �, � •• moi` °o•;? �� r y •r. :.. mac, Zell, , • r /�� ;�1;� \ ' •• '•. CJS••*+ -PQ ,r iidlir-` A,,, . . N\ . CD k r> ,1� m //S L��—,(/. ,'" / _ ",. w f '„t• N 1*" .- -::..11'‘.., .- •'ter n ;ter.. '4 � • • 13 . , k • j • • .r A' • ,.-., ,- f t gad, • s C'5 A _ _.rid• «-� t. A S` ': 'TS F ""4•4."'y ut.„k iw E •L"t ^ '* t , y4 es • 4, x • • • '''....*,..,:b,,,.... r �Y mm • �c / a: N,.,/' P;'i ' , '40 a 44 O M .ZJ , ...t \ •• CO • w•. ty��yf • ,.r 't•• �• a 1 ,,..r ,,.gi x...f `R..•'0''' t , ;0 ...(Jl ,/' F Tris+ .. j) .1,1-41/ti,,,,, "�P .F', • D _ r v 07 I < m • ••• A • k N lei' +"• "'a.'�r�• z? _, 1 .. "` • • (.. , 4,” • +:.44 •7 o 0 7:1 ? ' M ••. fx ...„ 4 )1. %., 'N''')J a- m D m • m o.. o 0) Z 00 H G) K o m m C rr o m 0 N N o S _. STORMWATER MASTER PLAN UPDATE Proposed SWM Strategy .. April 4, 2016 Table 3 Existing Drainage Area Summary Pre-Existing Conditions Watershed Area Tc Curve Number Watershed Area Tc Curve Number ID ac hr CN ID ac hr CN 100A 22.46 0.250 74.00 38B 26.62 0.397 58.30 10B 20.53 0.550 61.00 40B 32.10 1.460 40.80 11B 7.03 0.229 55.20 416-1 3.09 0.283 61.00 12B 9.78 0.598 61.00 41B-2 2.92 0.337 61.79 15B 1.93 0.256 61.00 42B 4.44 0.287 57.60 16B 11.73 0.416 61.00 436 3.39 0.280 56.00 18B 4.11 0.175 55.40 44B 8.63 0.529 59.58 16 467.57 2.353 62.20 45B 14.08 0.482 56.10 216-1 1.92 0.083 66.90 46B-1 6.69 0.083 61.70 216-2 6.43 0.083 66.90 46B-2 5.36 0.083 61.70 21B-3 1.21 0.083 66.90 47B 4.63 0.238 59.90 22B 5.17 0.160 63.00 48B 9.98 0.088 88.58 23B 8.73 0.193 58.00 498 12.23 0.210 65.70 24B 9.71 0.452 58.30 4B 0.86 0.083 61.00 25B 5.17 0.137 57.60 506-1 118.96 1.420 64.10 27B 5.82 0.163 60.40 508-2 13.11 0.200 64.10 26 81.56 0.630 59.60 51B-1 7.33 0.083 63.80 316 1.76 0.127 62.40 51B-2 39.51 0.596 60.15 366 3.40 0.173 61.00 528 1.13 0.103 65.30 37B 6.02 0.233 84.32 i i i r L 4 Stantec mg u:\203400430\05_report_deliv\deliverables\swm_mp_v3\rpt_swm_mp_v3_20160404.docx 4.21 6 STORMWATER MASTER PLAN UPDATE Proposed SWM Strategy April 4, 2016 4.1.3 Quantity Compliance Summary Collectively,the BMPs noted above address provide attenuation on a per-BMP, or envisioned outfall,basis for master planning purposes as shown in the table below for the 2-year and 10- year storm events. The loo-year storm is managed to the extent practicable. Minor outfalls or -- alterations in land plan based on design may be addressed under individual package or phase submittals. Table 5 Quantity Compliance Summary Existing Peak Discharge Proposed Peak NODE (cfs) Discharge (cfs) Percent Difference ID 2-YR 10-YR 100-YR 2-YR 10-YR 100-YR 2-YR 10-YR 100-YR L-2 8.25 26.25 69.07 7.68 25.47 117.95 -6.9% -3.0% 70.8% L-3 2.12 9.16 27.48 1.84 7.77 52.26 -13.2% -15.2% 90.2% S-1 9.60 28.04 180.16 2.01 27.75 202.08 -79.1% -1.0% 12.2% S-2 2.23 8.53 24.69 2.10 8.09 87.81 -5.8% -5.2% 255.7% S-3 3.70 11.68 31.07 3.56 11.48 43.11 -3.8% -1.7% 38.8% S-4 4.32 13.03 33.71 3.83 12.74 41.41 -11.3% -2.2% 22.8% S-5A 8.14 21.44 51.09 6.02 16.86 33.75 -26.0% -21.4% -33.9% S-5B 1.66 6.59 19.78 1.63 6.39 27.62 -1.8% -3.0% 39.6% S-6 4.75 16.16 44.49 4.48 7.93 14.40 -5.7% -50.9% -67.6% S-6A 4.80 13.22 32.24 3.71 12.79 51.41 -22.7% -3.3% 59.5% S-7 7.97 19.38 44.06 7.53 19.12 44.12 -5.5% -1.3% 0.1% S-7A 2.68 6.40 14.56 2.64 5.48 15.23 -1.5% -14.4% 4.6% ., S-12 1.25 3.83 9.93 1.14 3.41 24.98 -8.8% -11.0% 151.6% S-13 9.28 27.36 71.94 1.75 26.15 58.86 -81.1% -4.4% -18.2% 4.2 VSMP WATER QUALITY COMPLIANCE The document addresses water quality compliance under Part IIC across the entire proposed project. Accordingly,this report addresses the ability for the project to meet water quality on- site and additional measures required (i.e. Lickinghole Regional Basin), as necessary. 4.2.1 Overall Project Removal Requirements Based on the land use numbers provided, impervious area estimates for the Master Plan were established to assess overall project pollutant removal requirements. Pre-existing ZMA Stantec mg u:\203400430\05_report_deliv\deliverables\swm_mp_v3\rpt_swm_mp_v3_20160404.docx 4.25 11111011 • I n ,, -, . . ■ • •• • 10,,,,,,i • ,_-‘.. , 1* il M \ CO CO MI or .44 t"�co It\\,„, . i D \.,q_.,___ _ \* li s IV,-- ,fil‘\1 4011111 7----- I 0 c° • . 'f .....„ ItI44;ipp;. %9.� ' y \17 ; / i*. :- .,, ,i 4. 1,, C7 , 4.:1., \ 1. 00,, i : ....,:iii..-1, Taritak,5,10 1,\ it .4 • • • • 1•') ` _ .'o ( 11,41 l 1 1►�.Al **.rI • * 1' LL*__." ' ar . •` t ` . \-‘.,,, vs,• • • ' III tL6♦`a 11 ff a• • 1V. :: :' '. .4 ., i 1 Nri - /\) I ,,r , , 0 \* . . . .> I i I i. (Al' , 1 F * * * *-* I 11I 1 l' lii' 1 ...air 1 lc . _ . . _ . o *. : . — 4 44:7, lora iir 1111111.10virmata .4 ii ii* it '116 z" •w" • kina..4.m.Wl..•.._,Azbami 14.11.a in=1111Sitii 41 , .c.. _ ... o t ..... .... ,.: .,,,, • • .f.,... . • , . . 14 • \., A r /Art Iff*r •I T pl pr.V11 FTeN1 . . . . . t •A)) /1 Nib' -41 r_..,\_ \. ..: . .......... ., ( I, . .. ... _ I1 �� •IL -� Fr v' / liiiiii,......7-. •f.�l► _ `ftf`. a I `. )01, 40 fal:WAIIIMIIIIIIMAIMIIMINIMIIIIIIIIIIIIIIIIMIIIIIMMICIIIA.* `f'•.`•`♦`.'4 ����� �) elf, 41., ll k Allik. 11011W .• .. ..•*•*• • t5;,..4111r4 • 1.' INA, • 11110 _.4gt. , 1 .f:-.1 . t`{♦f`f f•♦t♦f `♦`• ' 811. r , op, Ag I -.41,. , . . , :, . .. ,, ♦ i • t t \ 01 ':. IF! 1 m, \ ♦ t . ♦ • . ; f f t { • t { ♦ { t f • •. f • ttN. N 11 hi . i i • ••••t ♦ f { • f f f 1 t f `f 1 f / ! t .-1- . ).. :1r), ' . t / f f 4 f 1 ¢ 4 f { ♦ t f N 0 f. • •• ♦ t t f t f L�p f f •f t f { 1 f ' MM1 •., • , f• t a• . '-,0111 .. \\.\\111100,*(r:::1> `t ` f • a • i ♦ • t . f . ` • ` t � .. o :� 'd 1I/ 411POIROP I R * « . . . . . • ilie NoONO G a O O ``ft. 4 %.%Y lD CD rn rU . • f ,t, y r- .I1-hFh -' w I--• a F-' (..n a N w N Ul rt i ' U if. :: . • • • lt .7 rte,,.fA N N (-11 n a w N) CD ASN N o n D N 1-. N .n N ¢ cn ocn -1c ♦ f v` • CD H- I-,- > > p., > > >4 Fr > > >1 tl 1 . 4 4 .4 r rt 4• ,41 A) f' 1 ♦ f • f Nin rrrt (D OH � HHW > OHH R. `ftf`.`•`♦ �� f I • in G rt '� G (D G .. n 'TJ G t•tfa♦•tt. �`. - -, a O (D I-i Di I-1 1-0 (D (D 1-1 '� (1 1-` G , N G 1-h .. hi, (D a Ph (D 0 I .+f`� ' /. O U] G I-1 I-1 - `• ` !(( cD R. ) (xn MP- II UxC _ _ . . ' � II a cn N l,U cn a N G� G-) O N G") O ' . 1� I-h n G - '/ n rn o G (¢D (D td MI m ~ CD bJ 0) .`. r . z .`.`.`J Ti 0 ZZ z z - 0 . . f `. .-Htr cn O O 1 (1) pn u u ii 4 ni II (D 1J (n rn U) U) . • • . G n n 1--1-'- n cCO ( n 1--• (D G G - J : V ' U7 (- 1--' \ E E > VV < •.`.`.`. / D CT! rr F E M . .' jt • • z 1-` CD (n IJ- F E �wj Q ` N- o Iv t:)- > (fiG F E > < IPP., O ti.. F F M / ©� O O (D .,::>, \*. :Pil I ♦ c E F E > < II M RD I--' I-1 (D F E '� 4, • N �/ > V O 0 70 m m m O m 0 0 0 0 n Co GO CO CO CO CO CO O7 CO W W D D > -s -0 v '- ✓ v N 1-4 A W W N I-+ Fa �' O al In A W W N N N N "! G. fD =• �+ 0 ( O 0 0 0 ^O (D s-w Z nO T O til �- to 5 n (T. (D ID vi O to O c n cn NJ NJ F, I-+ 1-1 1--' 1--1 1-4 1-4 I-4 NJ I-4 F, IH - N I-, F-' r� 3 00 W W O 00 A W A V W 00 V W UI F, F, O O O O W O 1--+ NLr) ✓� U7 U 1 W O O Qi 00 N dl N A N 0 In lJ N W `Ql in O ID N l0 A N In Ut N In 1-, 1 , N NJ UI NJ Ql A In LU N F-, J 1-1 A 01 1--' O A O t.0 WNil01 lii O COOO 0 U1 In N Ln N c)--) QNJ In Wl OW A CD . Fe - N ... 1-, F-, r-, 1-, 1-' I-' I--‘ N ., I-, 1-, F, �, 'S7 W Ul W 0o In LID CO CO lD 00 Ql 1 co Lii lD 00 N I--� N A O U1 N A O I-, N ~' In lfl J t0 J W O l0 V CO O ID Oo lD i0 O A U1 `A -, 1- sCID -Co "'! W UI 1,11 NJ V A U1 LO O CO N J V t_nW N 00 V i-+ U1 A NJ 01 1-1 J NJ l0 In W O l0 CO CD A V W 00 C. CD 00 A 1-+ 1� W CO O N Ul N 1-, 0 = O O CA W UD O O 0 CD 0 0 O CD 0 0 0 0 o O CD CD O CD O CD CD O O CD O CD ✓ lD CO A lD 00 CO 00 00 Co lD V J W 00 �I J Co Co �1 Co �I 0o Co co V n 00 CD 1-, CO 0 N A N O NJ O l0 CO CD A �1 CD I-1 A CD CO h, In A J CO 01 CD CD CD CD 0 O O O 0 O 0 CD O CD CD O CD CD CD CD O O O CD CD 111 O U, A A W W W A O N N co 1-, N •N A N N N W A 1-, N N N Y 03 J W CD W A O A O 00 O 01 1-, W CD CD J A WV' CD CO In Cr) Lfl W n n n 1„� E C C 0 J Z Z � NI Ni \ Z \ Z Z \ Z - l'-' 1-' D D W N N o0 D iO ' D D UI 2 w D A D Iv D 1-, D c r+ r+ r+ CD W NJ 1-_, f"1. 70 -1 --1 -I -I -1 N In N In In H LU 1,N U, to to ro O 7D 1-, I-' ~' I-' I--` --I , , H -I W -i H -I -I -1 -I F, I-, UI U1 W N F-' CO lfl l0 In UI ,y, A A NJ NJ I-4 1-1 fD In r+ Z r+ r+ + r+ r+ r+ r': r'+ Z Z r". r+ z Lill = 0 _ 0 0 0r 0 0 0 0 0 0 0 0 0 0 0 0 O 0 Z Z O 7 D v1 O O v1 v1 vl N N D D On vl D O v, In In v1 v1 v1 D D n N A rt _1 A 0 0 0 A A N W W w W NJ NJ O. N U' 0 CO_ CO CO 03 03 03 07 03 03 CO CO 03 CO CO CO W CO CO 03 CO CO CO CO O O O O O O O O O O O O O O O O O O O O O O O - Z Z T T T T T T T T T T T T T T T T T T T T T T T O r r 1-- r r- 1- 1. 1 1- r I- r r I- r- r- r r r- I- r- I- r- CO D D m m --1 m m --I m m m m m m m m m m m m m m m m m 70 A Do 70 7J 70 70 70 70 7J 3D 70 X 77 A 70 70 70 A A 77 70 70 •0 m m m O 1'n O O O O n 03 W W w W W C0 W 00 03 03 D D (! r)S (1-S) Are B 3S� Area A /Area C 7P 8P i BIOFILT R B 6P BIOFILTER C BIOFILTER A 11 R 01T 3 5S Area E (4S) --p 9P4 10P 00 Area D BIOFILTER D BIOFILTER E TOTAL RUNOFF TO CREEK \Subcat Reach on. It Drainage Diagram for Old Trail Post-Development 10-2-17 Prepared by Shimp Engineering, P.C., Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Old Trail Post-Development 10-2-17 Type II 24-hr 2-Yr Rainfall=3.71" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 2 Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method Subcatchment 1S: Area A Runoff Area=22.497 sf 88.05% Impervious Runoff Depth>3.04" Tc=5.0 min CN=94 Runoff=2.59 cfs 0.131 af Subcatchment 2S: Area B Runoff Area=132.307 sf 79.04% Impervious Runoff Depth>2.64" Tc=10.0 min CN=90 Runoff=11.79 cfs 0.668 af Subcatchment 3S: Area C Runoff Area=13.652 sf 79.69% Impervious Runoff Depth>2.64" Tc=5.0 min CN=90 Runoff=1.43 cfs 0.069 af Subcatchment 4S: Area D Runoff Area=50.030 sf 87.95% Impervious Runoff Depth>3.04" Tc=5.0 min CN=94 Runoff=5.75 cfs 0.291 of Subcatchment 5S: Area E Runoff Area=68.105 sf 73.55% Impervious Runoff Depth>2.46" Tc=5.0 min CN=88 Runoff=6.72 cfs 0.320 af Reach 11R: OUT 3 Avg. Flow Depth=0.37' Max Vel=8.40 fps Inflow=3.31 cfs 0.732 af 24.0" Round Pipe n=0.013 L=50.0' S=0.0400 '/' Capacity=45.24 cfs Outflow=3.32 cfs 0.732 af Pond 6P: BIOFILTER A Peak Elev=684.12' Storage=1,420 cf Inflow=2.59 cfs 0.131 af Outflow=0.94 cfs 0.130 af Pond 7P: BIOFILTER B Peak Elev=673.72' Storage=9,934 cf Inflow=11.79 cfs 0.668 af Outflow=2.58 cfs 0.663 af Pond 8P: BIOFILTER C Peak Elev=669.15' Storage=512 cf Inflow=1.43 cfs 0.069 af Outflow=0.84 cfs 0.069 af Pond 9P: BIOFILTER D Peak EIev=660.57' Storage=3,406 cf Inflow=5.75 cfs 0.291 af Outflow=2.18 cfs 0.289 of Pond 10P: BIOFILTER E Peak EIev=652.67' Storage=4,050 cf Inflow=6.72 cfs 0.320 af Outflow=2.20 cfs 0.318 of Link 12L: TOTAL RUNOFF TO CREEK Inflow=8.64 cfs 1.469 of 1.469 of Total Runoff Area = 6.579 ac Runoff Volume = 1.479 of Average Runoff Depth = 2.70" 19.97% Pervious = 1.314 ac 80.03% Impervious = 5.265 ac Old Trail Post-Development 10-2-17 Type 1124-hr 10-Yr Rainfall=5.58" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCADO 9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 3 Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method Subcatchment 1S: Area A Runoff Area=22.497 sf 88.05% Impervious Runoff Depth>4.88" Tc=5.0 min CN=94 Runoff=4.03 cfs 0.210 af Subcatchment 2S: Area B Runoff Area=132.307 sf 79.04% Impervious Runoff Depth>4.43" Tc=10.0 min CN=90 Runoff=19.22 cfs 1.121 af Subcatchment 3S: Area C Runoff Area=13.652 sf 79.69% Impervious Runoff Depth>4.43" Tc=5.0 min CN=90 Runoff=2.32 cfs 0.116 af Subcatchment 4S: Area D Runoff Area=50.030 sf 87.95% Impervious Runoff Depth>4.88" Tc=5.0 min CN=94 Runoff=8.95 cfs 0.467 af Subcatchment 5S: Area E Runoff Area=68.105 sf 73.55% Impervious Runoff Depth>4.22" Tc=5.0 min CN=88 Runoff=11.18 cfs 0.550 af Reach 11R: OUT 3 Avg. Flow Depth=0.84' Max Vel=13.26 fps Inflow=16.32 cfs 1.230 af 24.0" Round Pipe n=0.013 L=50.0' S=0.0400 '/' Capacity=45.24 cfs Outflow=16.50 cfs 1.230 af Pond 6P: BIOFILTER A Peak Elev=684.47' Storage=1,754 cf Inflow=4.03 cfs 0.210 af Outflow=3.87 cfs 0.209 af Pond 7P: BIOFILTER B Peak Elev=674.45' Storage=12.920 cf Inflow=19.22 cfs 1.121 af Outflow=15.27 cfs 1.115 af Pond 8P: BIOFILTER C Peak Elev=671.31' Storage=1,004 cf Inflow=2.32 cfs 0.116 af Outflow=1.15 cfs 0.116 af Pond 9P: BIOFILTER D Peak Elev=661.78' Storage=5,235 cf Inflow=8.95 cfs 0.467 af Outflow=5.70 cfs 0.464 af Pond 10P: BIOFILTER E Peak Elev=654.06' Storage=7,760 cf Inflow=11.18 cfs 0.550 af Outflow=2.47 cfs 0.546 af Link 12L: TOTAL RUNOFF TO CREEK Inflow=25.57 cfs 2.450 af 2.450 af Total Runoff Area = 6.579 ac Runoff Volume = 2.464 af Average Runoff Depth =4.49" 19.97% Pervious = 1.314 ac 80.03% Impervious = 5.265 ac Stormwater Quality Calculations: Post-Dev Master Plan SWM Quality Design Sheets Post Dev BMP Map Biofilter Design Sheets m ii O X C D (n O H (n y N N N N (n N N N r r r n OW Z co N D V D P D W A W N W N o I O X K o K X_ f : Iez m r (n f m m m m l'') m X 3 3 O. m m M7 ° N v -a M 0 N O au co N w 0 Z m (D •o a 0 -1 m. w m. w w w w w w w = 4 w _ _. -, a 0 0 co a a a a a a O A N (D N (D N N N 0 (D pc N co N m 0 0 9 9 9 0 9 0 0 0 IJ ❑5. . o ai � v, v, cn in 'v, v, in v, is < � v, 5 -1 0 > > > > > > > > > > E, 5 F < m n n n n n n n n n n - A n - A H xi -0 - - s s s s - - - - s s x - x Z Z S < 0s - o ♦ o Ci w m m o ` G n 7 I- n F m 7 FO OQ ommm u - w D x - y ,u - A W L" o. w N n T> 0 m O OA- a. O O0 A v to O r O m '=^ 3 P.: V/ P A A W O W N W A al V U a N n D N (T � A (b W W - P � co co (Nn - U N (D O N .a. O 0 v m 0 D ,� v DZ( Pn V (..7, cn a, cn cs, co, c.,, (cn V (11 ((11 .Po N o L! 0 0 0 0 0 0 0 0 0 0 0 'J � mp O al N { 1- >D -o0 V^� 0 O p_ ._ N _ N P O aOP PO O O A .p W -0 O_i .p N A O W CP WW CO W P U Cn N -, a n O U O UO U OU U O U U P U U UP O A (1. 3 O F1 0 .c e ...//',, 7 „ ..,:„., , .....• v,„, ,,,,,,/,,, ...,,,„__,_.--___, ,:„.= - , ,/,,,,, , ,,,,t,„„/ ,,,-- / „,,, /.. .„„_._,......„..,„ „,,,,, ,,/, ,„,,,, ..„:„. I/----,. --• . .,:,-, ' • :',,,' , , ,, . , • /. � """"" LLL✓✓✓ i 0 /P_000 • % /.. A / _ '..`1 �l A ,O W N A A A W (Nl+ 0 �' �� N U N U -O W P W Fp (D Q { AP. v 't .% ,, ,, / . , / • ,,,...::: a) k.,,. • , .,': Ai, .1/4,.4e, —1 ry4• r r� fo+ f :yp1., .'":1 ''nO ° e 4: V'''c/'c 1 /4444'"''''.....-.3\ ''''-',\,,,, * /Y'r a', ':.• ,,.% 111,.r . 1041110ej \.,,,,,N lik 0 . .. *-°,'ii.' ';;;,40. 4tv *411IF ._-24.* Q)1 q , *., -Th\N. , (i , ilk j ell rf. ♦ ,,,..• V t C3 > ,Fa e��f�/ C �`� ' ; tti #R. C CJS /-4//iiN,,' . , < v wril ',,. c CR„...,....----\ t c7C7 :x rQ co l 1. :f /44 SC‘5 / 1 4,?„,...,"' 7 * • '''cy, 1 0 " fr . 'pe - 2\_.-' . 1 . ocoO i� ` .,. >`, _r . d ;:�'\ l�as f o 13 D D { ., v rte' * 3> > \ 2 r*T1 ° i f30 `41 pV J� Er i is � ��� �'/ r < a .1.. ....:..1r,-,S �" L } 1� m ..„- \\:.,,-, , 4 , • • !. ;. J . }-5 ,• _ •••••'''''' ,y ,may [ 13i\, J_.. y,r7 W Yam co J { �.� F' tl 13 O ( m1 tik, 13., 1,„,/ \ o _ co 4r.. twt� ' \. / 3 { f % z 'M1 F m mCr) -mac A , (0W o _L A N N a 8 r.11•011N r....IN 11.E 11111IMIN. . * * . —I * , A > -- a D D O Q ` Q Q 0 - a- CD 0 0 c m a 0 Q - - = = CD in O 0 CD�' Q p J = Q - v m ° c CD Or Q n cn cn cn n cn AQ ON N cn n n N r r CJI(-) Q D WNDV D0., D A W N W N Q Q N • O O x, D n n co 1:3Q a 3 P o ° o W D Q Et_ CD 7 Q C0Ca O N m Q _' Qv,a O Q a Drn- wCV XCD Q 0 0 CD O Q C CD f SO 4Q a O Q co p I .. 5 m •••< 3 5 CD x (nO D N " -O< Q_ N CCC) D cQ Qk — 0 CD -I D Q O (76 pO CO. x •••••••••CD O O O O O O O O O O x O pQ < Q O O O „ .. -, =, 0- D c Vv -C---.7" O rn `^ 0 0 DDDDODOOOOp w 60 w D o, 2 S2. m < QXQD Q 9 .. Q .:"<", •-,, p oCc CD a ° O C 0 - 0000000000fN p '0 2 6, u, C„ u, u, u, v, u, v, u, . - u, = J 43< a Q N o 0 c c pQ = o CD o - o o• w O m m Q a Q. 0 3 oQQ O > m D > CD n QQ a° a ° -< CQ QN QDQ DW6 ' QQ fD U - a - A COW U P _ - fl C) r- Ca = .0 i •` Co , CoiD ( 0 o •v Q 0 .CQUW V P O V N N N O0, mQ Q (a P \ Q -a D- N Q Q QO n lD O Q - 0 CS 0 O a O O 0 .�•- OO ( O 7 N Q N N N O O P A A W O W N W A 0 V U P N QA D CD 0 O, o CD lQ -I Q O Q ' ., O . N U 'CO - N N V A N CO D a DoT wp 0 Q v .o A co c •-o Q Q a n r ON iii tD ... Q p a O 7 w a ... Q' CA ,,,, c 7 Q. CD .z7 n Q O O a Q p Q Jm Cr- D O " D0, V 0, o` o` o, 0, o` 0, 0' 0, 0, 0, 0, u, (D CD 0 _1 CD0 Q u, V U, u, u, u, u, u, v, v, V u, u, -O N 0 a A a a D o i.,,, b b o b b b b b b b 0 'V .. Q <_ '..o `.° (^ Q 3 Q a s o 0 w s K = (Q C r O K p � � QO Q ,-, A N r O <cx, O A N N W N V U co -O N P N O, O Q 0 17 -• W Q b �o 6, P O O O A •V A W -13 Q. O O -0 3 7) 3 'O N A co Co.) U '0 W CO co W 0- U U \ V, u' \ (D .< (fl (D 0 o < X a C O Q .... c 3 TS <D X N Q .. N Q. O 7 'a 7 m n N a Q ^ O a CH 3 o o 0 o 0 0 o U 0 o rn, O o o O D 3 - Q o m Q a T N3z QA Cn) Z7 n (� = W xi .may Q 3 `C a P3 O W 13 V A A W N A A A W U W V Q oW o o UN0,A '0D _ w 0 3 ... Q U N O .'o 0 T • ,Q -13 Q o T m Q Q. 3. (D .7 r `0 U U - !D N U -.- D co c.,, C Q -a O, O5 X I O• Q (Ts c77J N A W P N A A o, „„` 7 -1 -1 V W N V Co .NO 'co A 0 - C.J N W N _•f (D 'U 2 O W c0 A - 'O -O N V Cr' N W A A v O A CO A CO O V CO 7 ~ T 0 O < O •D Q n a a el .c 5- tri cD V A U 'O W N A U 0` Q Q_ y —tri CO N co, O A O P U W CO A 0 0 j. Q. Q ✓ 7 (D Q CD loom Ifl"ori -i...• immoi \ir~i lommii .\`moa v ii..a I� lionm�i --� 1 • a: \ ' \ \ \\ \ \ \ 1 ! '� /// r --- \\\\ —~\\\ \C \\\ \ I / / / /I 1 u la Ir / 1\\,\.. ....._,: \\\ .\ \. \ \ \ \ \ r 1 ///r / / \• . . N \ N \ \\ „ N \/ // I I ! l r / I\V v \ A •v v v v v r I I / / �r // , �AVA v-- vA �. N vv N v v........ A .11 ---- rr / 1 I 11/I /,.'�'� r/ fr.' \\ \ —\\ \ ;� J N \\� \\`� : 0-' • 11 �1/ /1/ / r_'., / \` .\\ \.._- N. \\\\... \ I C ` - . . — . ` •Qy O — . . z .. — 1 % 1 rt1 �11 11 /' ,,.'' / 1 \\ \ .�.\ �; i NNS rl ' I i I j I/ / // • ' I\ �\ vvvv vvv� °�� �i t� I m i / ir1 t � 1r11 / /' I . \ \ \ I \:, 7�� I , _ la N. 1 t / I \ \ _ I / , ilit 1 V , , \ \ \ \ • It5 . ._ 12 -Ifs •„�+ii ' ! p , r , \ b . - .. I i 1 i I I I f / / \\ \_ i 1 I \ \ \ \ \ \` 1 , \„ \ \ tl\\ \ -.., �,'S C7 ,. 1 1 I I t 1 r/-- I �1.. / \1 1 1 \ \ \ \\ ,.„.,,r.„.,,,.,, ii.1/4.. n�n�u�n�n�i Q l i II i t I l i i r l ✓i ! 1 I 1 \ \ \Ii 1 1 1 1 1 11 I / r I . Il 1 \ \ ' O• • 4.1 ( \ \ ■SI. 1'aCIiill1\ \I\l 1 / ./ \ \\ i 1 .�s�l: • Ta���� \ . .it i 1IIir / may \ I ■ I11111 ( , rI \ \ \ \0 i / , 8 (0111 _ _E I1\\1 \ 111 1 f 1 (• • \ ' \,'/\ 1 • 1 1 I \ \ I 1 i i I — . / / 11 1 11 1 11 I / i 1 I • , , • /r ! O� \ %' V I 1 1 1 1 1 ■ �� J / ill 1 1 1 1 1 1 I / . •1• • r • 1 / / 1 \ . - ■ f I 1 \ �� i� / PD � \ I I iii i 1 1 r • �� \\ + ,�— • ! / / \ \ rm O o _ r 1 ` 1 \111 1 i \i i i • 1 • \ \ i I) i ! _`�•� , i O O/ • — I i 1 1 / \ \ \ 1 \ \ • I I \ I N / I O� \ 1 I ---1--- __ _ I I ' 1 III ; \ \ 1, 1 • . \ 1 + rJ ii \nu � m I i I I 1 i I I 1 1 \ 1 • \ I 1 r / / I / `� 1 \ 1 \ + ! _ — — �� I 1 II I li I rl 11 i\\• V •. Itr / ` lr41 V_ I 11 1 _ I 1 cD 0 �, / —c I I I I 1 \.• i r �, 1 1 1 1 i 1 . .i ,-- CD.,I W �I I / / �. I • / Io 11 ' 1 1 1 1 • . ' . 1 0 C) 1 0 \” I I i 11 1 11 I — _/ • 1 1 I II 1 1 i A .i tt a m vv �) T \ vv vv r/ _/ —c / 11 1 , , 1 1 1. •� 1V �a \ V N A Ate/ rI —c- - r t t 1 , i 1 / ' Imo--- ► \ . \ \ �' i-/ 1 1 1 i 1 I i ( 1 • ` \\ ) 4 �''+I ?\\ ` .,Z \ , �i L `i 1_, L 1 1 \ I \ ; ' - i / 1 I I i \ \ a\mss „I �/ ,�, ! 1\�. . �J / i s �► \ \ • / / 1 I 1 1 \ \ \ N ��� 1 �AI 1��*\ I A, '1 A\�\ vv N // / I _— / 1 1 1 , \, ��\ '� 1 \ _ //�- , . / 1 r I -•� t•11\ e a �V / / t / — 1 I i \ p , iwif/4. co, . ones n n ,I \\ / 1 I r / i \\ \ 1� IV •\ L1 1 \ \ \ \\ N. 1'! +r / � 1 ii 4111.14 \ ite - r — N. N., / I ft ....- s. N N-, 1 1 I / ' ;,, s<A \ _ ... 1.191 of r•-. .- •14-1 , ..-.9m--IMF/9m,—iorw_....r, \\ \`� .��\ 11 / 1 I \ \ \ \\ ' \\ ' \ • \ I \\ N\ \\ N etr,101 •. \ r �� \ \ ) I r 1 \ \ \\ �\ \\ I\\ \ \ �� \ 0 •M / \. :: • \ •\ 1 I / \ •\ \ \ \ •\ \ /� >r Il 1,," X N' -'l \\\ \ \\• ,,,<:. lik .'• '-'• 1 •• N •� \ I `yam. ✓.y \\ \\ �Il \\\ \ \ •�\ 01A. nu�'...• ir'''' ...., ''',,... 7\ '..0 i —_' - f �' '- ,.,,a,.:11" \ ilMi. 111 N''':41 t"d • \ \\ \ f` \\- l \ \\ \\ O \\ \\ • \\ \ \ \ 1 \ \.\ - \\ \\ o II ILN N \� 1/1 \\\\\\\\ \\ \\\`\\ \ "•/. . ::-N:\ \\-1111, 1111 \ \ \ 1. .1°27-1: 1 �• \ \ • \ Lii I I. t � \• \Ns':,..,:, \ \ \ \ ) \I \ YN \ \ \ \ i\i1 \ _I 0\ 1.11 \I /' \ \\N,I\ \\ \ \ � � \• -ate \ � ('� \\N \ \\N.\\\\\ \ \\... \\ \) \ \• \ \ \ =II t \ \\\ \\\\, -,\�\\� \\\ \\ \ / s. / CD \ \\ \ \ IF+• RrTR-11 \\ \\ f• J / \\ \\ \\ \\\\\\\\\\\\ \\\\\N \ \ �\ 1 CDs\ �\ \ \ 11 \ \ \ i0�_ 4;Js;: ��� :.• \\ N\\\\ \\\\\\\''''':NN \\\N \\\ \ \ \ CD * \ ) `b \\ - \ \ \ Is \. \ ` I-I • \\ \—.' \\\\ \ \ \\\\ \\ \\\\\\\\\\ \ I \___ I \\ ) \ \ ,� a \ \. \ �\\ \\\ \ \ \\\\ \ \\\\ \ �� \ \ \\ \ \\ �_, I \\ \ \ \\ ''\\ \\\ \ \ � ''''\ ‘•''''''''''. \ ) \ \ \ \ _ \ �\ I \\\ \�\ \\\\\�\\\\\\\\� --..,---i'.---...... -....7, ------,\ \• \. // \ \ ) \ 1 \ \ _ \ \ _ Ili.. /�•-- I \C" . l 'il 0 0 0 .\N`_--_ ,....`\ \\\:\\\\ \\ \\•J. \ \\ \ \ '.\ 11 \i A-/" CD .\\\\ \�•'-_� `\\\\\\\\\�\ \\\\\\ \\ .. . • \ \\ I \ '� ' '\' i \ \ \�� \\ \\\\b. \ \\ \ \\\ \\ \ \ . 1:\ ��// �► ~ `\ \ ~1 \ \\\ \ \ 0I \ \1 \ \ \ \ \ \ \ \ • \\ II \-\\`-N\▪\\\ \\\ \ \ \\ 1 \\I\\\\I \ \ \ \\ \• •1• •• .. \\ \ ��. \\ \. �I 0 \\ \\ \\ \\\ 1\ I \\ \ \\ 1 1 1 \ 1 +\ •\` • • )•`\ \ _ . ' rilot VI: p —H0 / . \ \ \ \ 1 1 \1 11 1 Il li i I I \� \ III \II II \ \ \\ , \ \1\ \ 11I1 1 I 1 I \ (� \ \ c) W 0 \ \ \\ I I l I I I\I l I I I I 1 1 I I i • • •\• ')1\ I 0 \ \ ,. \ /N U' O, - \ \ \ , I 1 1 i 1111 I 1 t • .:\ • ) ( \v\ \ `\ `\ `� 00_ bs \ \ \ , 1 I ! 1 111 1 i 1 , I 1 I • . '\• \ , ' \ Cri ,„):," \ \\ \\ \\ I 1 I I I i l l l I I 1 1 I • ,\� . • `\\ \\ \\\ \- Tei \— DCOco I 1 Il 1 I r I t 11 r 11 1I 1I I I II :)Ni \ vv : W I .tog CO cn -s \0 \ 1 11 ‘\\1 /// /\ i \ 1 1 1 � 1 1 I I • • \ \ \\ \ ( �' \ O\ 1111 \\ \ 11 , 1 • • r\ �\ \ (, :zs, „ l \ 1 „ 1111 \\ \\\\111 1 I I 15 '1• ) \ /./:.rn Q \\ I II \I1111I\\11\I\ \ \i\111 1 I1 -_-- ; \ \\ Il',..;\!,:e!‘ I v I 11I 11v viAv11,v, 1 !11111 i , I I �\. vi...\ ��v v i \: t \ \ \ \1 r/\ 1 1 , O i \ 1 \I \\\ \ i i 11 1 . 1 I l\ \\\\\\ 1 t I 1 •\� )\i \\ Ii\ I / i 1 \ \. 1\IV , \I 1 / I 1 i V v , AIA\IIVA , I I ,1 A' •\ - • ) I AI \ / •��1+ u�iu 1” vvv ' ' III\ \\\,1I `\\ �\\ 11 1 •• - \ ))\ \\ I\ , + 7 07 0 / \ \ VA\ i A ;__ // j 1 I \ 1 \\\\\ \\� \\\\\\�\\A\\1\ 1rr '1 \\ 1) \\ \ 11 I.-- / r/ II1 \ \\ \\\\ \\\\ \\ \ \ 1I :\• i \\ \ 1 ! j \\\r I \ \ \\\\\\\\\\ \\ \ 1 \ /,71.\ Z7 N / /1 / ! \ \\ \\\I\\\\\\\\\\��\\\\\\\ 1 •�\ �)`\ \\ \I 1l \\ D O / // / / \ \ 1 \ \I 1\I\\\\\`�\�\\\\\ \\ .• 1 ) 1\ 1 , Ir • 1 Z Z� --- - / / / l r / 1 /i 1 1 1 \ \\\ \ \I \ •. \ \\) \ ////l l / `� ' G7 .P it , / / / t 1 \ \ \ \ \ \ \ \))1I 1 / 1 1 / / / / I I I I \ \ \ I I \ \ \\ \ \ IT1 RD 'r/r'`,. ....../ /r/ �/ r I� ! I1 I 1 \\\i\\ \1 \ \\ / 1. \111,t/r l r, / \I •-- - / �/ // ••••••--' ri�r ,1 If / 1 ,! ! IIl { I I / ,�\ Ir/4/ - ri/,r i'r -..," ,�/•// / 1l //// /t%/)/I I / '\\ • •�1kf11, 4 /\N . N Old Trail Blocks 5 & 20 Worksheet 1 page 1 of 3 STEP 1 Determine the applicable area (A) and the post-developed impervious cover (Ipost). Applicable Area (A)* = 11.64 acres Post-development impervious cover: structures = 0.00 acres parking lot+ acres roadway= 0.00 acres .. other: sidewalk= 0.00 acres acres Total = 5.27 acres 'post= (total post-development impervious cover-A) x 100= 45.2% * The area subject to the criteria may vary from locality to locality. Therefore, consult the locality for proper determination of this value. STEP 2 Determine the average land cover condition (Iwatershed) or the existing impervious cover (Iexisting). goi Average land cover condition (I,are�shPd) If the locality has determined land cover conditions for individual watersheds within its jurisdiction, use the watershed specific value determined by the locality as 'watershed• 'watershed= Otherwise, use the Chesapeake Bay default value: 'watershed = 16% IMO r PERFORMANCE-BASED WATER QUALITY CALCULATIONS Worksheet 1 page 2 of 3 Existing impervious cover(leviong): MN Determine the existing impervious cover of the development site if present. Existing impervious cover: structures = 0 acres parking lot= 0 acres roadway= 0.00 acres other: = acres MIS acres Total = 0.08 acres r. existing= (total existing impervious cover_A*) x 100 = 1% * The area should be the same as used in STEP 1 STEP 3 Determine the appropriate development situation. rr The site information determined in STEP 1 and STEP 2 provide enough information to determine the appropriate development situation under which the performance criteria will apply. Check(Ai) the appropriate development situation as follows: Situation 1: This consists of land development where the existing percent impervious cover('existing) is less than or equal to the average land cover condition .. ('watershed) and the proposed improvements will create a total percent impervious cover(Ipost) which is less than or equal to the average land cover condition (Iwatershed)• Ipost 5'watershed era rrr PERFORMANCE-BASED WATER QUALITY CALCULATIONS Worksheet 1 page 3 of 3 1111 Situation 2: This consists of land development where the existing percent impervious cover(existing) is less than or equal to the average land cover condition ('watershed) and the proposed improvements will create a total percent impervious cover(Ipost) which is greater than the average land cover condition ('watershed)• 'existing 0.7% <'watershed 16.0% ; and 'post 45.2% > 'watershed 16.0% Situation 3: This consists of land development where the existing percent impervious cover('existing) is greater than the average land cover condition a atershed)• 'existing > 'watershed %; and Situation 4: This consists of land development where the existing percent impervious cover ('existing)is served by an existing stormwater management BMP(s)that addresses .., water quality. If the proposed development meets the criteria for development Situation 1,than the low density development is considered to be the BMP and no pollutant removal is required. The calculation procedure for Situation 1 stops here. If the proposed development meets the criteria for development Situations 2,3,or 4,then proceed to STEP 4 on the appropriate worksheet. 1111 1111 illIN 1111 a. Old Trail Blocks 5 & 20 Worksheet 2 page 1 of 4 as Summary of Situation 2 criteria: from calculation procedure STEP 1 thru STEP 3, Worksheet 1: ims Applicable area (A)* = 11.64 acres a. 'post= (total post-development impervious cover_A) x 100= 45.2% 'watershed= % or 'watershed= 16% rr 'existing= (total existing impervious cover-A*) x 100 = I 0.0% <I 16.0% and existing — watershed s Ipost 45.2% > Iwatershed 160% INN STEP 4 Determine the relative pre-development pollutant load (Lpre). Lpre(watershed) = [0.05 + (0.009 x'watershed)] X A x 2.28 (Equation 5-16) where: Lpre(watershed) = relative pre-development total phosphorous load (pounds per a� year) 'watershed = average land cover condition for specific watershed or locality or the Chesapeake Bay default value of 16% (percent expressed r` in whole numbers) A= applicable area(acres) a. Lpre(watershed) _ [0.05+ (0.009 x 16.0%)1 x 11.64 x 2.28 5.15 pounds per year PERFORMANCE-BASED WATER QUALITY CALCULATIONS Worksheet 2 a■ page 2 of 4 STEP 5 Determine the relative post-development pollutant load (Lpost). Lpost= [0.05 + (0.009 x Ipost)] x A x 2.28 (Equation 5-21) where: Lpost= relative post-development total phosphorous load (pounds per year) Ipost = post-development percent impervious cover(percent expressed in whole numbers) A= applicable area (acres) Lpost= [0.05 + (0.009 x 45.2%)1 x 11.64 x 2.28 = 12.13 pounds per year STEP 6 Determine the relative pollutant removal requirement (RR). .r RR= L'post - Lpre(watershed) RR= 12.13 - 5.15 = 6.98 pounds per year urn STEP 7 Identify best management practice (BMP) for the site. 1. Determine the required pollutant removal efficiency for the site: ime EFF= ( RR/Lpost) x 100 (Equation 5-22) where: EFF= required pollutant removal efficiency(percent expressed in whole numbers) RR= pollutant removal requirement (pounds per year) w Lpost= relative post-development total phosphorous load (pounds per year) EFF= (6.98 - 12.13) x 100 i = 58 % PERFORMANCE-BASED WATER QUALITY CALCULATIONS Worksheet 2 page 3 of 4 rr 2. Select BMP(s) from Table 5-14 and locate on the site: BMP A: Bioretention filter BMP B: Bioretention filter BMP C: Bioretention filter BMP D: Bioretention filter BMP E: Bioretention filter Mil 3. Determine the pollutant load entering the proposed BMP(s): LBMP= [0.05 + (0.009 x IBMP)] x A x 2.28 (Equation 5-23) .' where: LBMP= relative post-development total phosphorous load entering proposed BMP(pounds per year) LBMP= post-development percent impervious cover of BMP drainage area (percent expressed in whole numbers) A= drainage area of proposed BMP (acres) LBMPA = [0.05+ (0.009 x 88.1%)1 x 0.52 x 2.28 0.99 pounds per year ` LBMPB = [0.05+ (0.009 x 79.0%)1 x 3.04 x 2.28 5.27 pounds per year LBMPC = [0.05+ (0.009 x 79.7%)1 x 0.31 x 2.28 OS = 0.55 pounds per year LBMPD= [0.05+ (0.009 x 71.4%)1 x 1.15 x 2.28 o = 1.81 pounds per year LBMPE = [0.05+ (0.009 x 69.9%)1 x 1.56 x 2.28 2.42 pounds per year doh PERFORMANCE-BASED WATER QUALITY CALCULATIONS Worksheet 2 page 4 of 4 r 4. Calculate the pollutant load removed by the proposed BMP(s): Lremoved= EffBMp x LBMP (Equation 5-24) where: Lremoved = post-development pollutant load removed by proposed BMP (pounds per year) EffBMP= pollutant removal efficiency of BMP (expressed in decimal form) LBMP= relative post-development total phosphorous load entering proposed .. BMP (pounds per year) LremovedBMPA = 0.50 x 0.99 = 0.50 pounds per year Lremoved/BMPB = 0.50 x 5.27 = 2.64 pounds per year LremovedBMPC= 0.50 x 0.55 = 0.27 pounds per year LremovedBMPD= 0.65 x 1.81 = 1.18 pounds per year Lremoved/BMPI)= 0.65 x 2.42= 1.57 pounds per year 5. Calculate the total pollutant load removed by the BMP(s): Lremoved/total =Lremoved/BMPB Lremoved/BMPC+... (Equation 5-25) .. = 6.16 pounds per year 6. Verify Compliance: a Lremoved/total ? RR Required Per Old Trail SWM Master Plan >_ 6.07 MIN UM Mill or r. 11,14z $01 Vrt gigs it t:Aiti tt tJJ G�? 0 0 -ice; to ,w O f� .op _ il M '0bltt r, .44,1.';', 0• O• voin "14 L M CL. l 0 0 "4I f= coN ° :N 1.d ,.,M x *--4,L1) rM • .+t, El f.,� © _ CO z(O 'CO t • v CO dm Ndi 14111', 1.1 o Y ,. 4.#..,,,,-.4%,:.., 0 err �� ;,, � � N VS ':;.",-i .. . I 11, gig x '< , :4,.,,,a10(1- @J II l , '21 ilk, 'o . L !,--..::::1;2,-_'' 0 -� N 11 Ut�N ; IIA iii Ito r. IAN o (�3. O co "O : . L O t±:;-:,,: <--f,N (, ,tD 0 ' '£3 gyp:`= 2 (') ,� Ca (0.c0 W 0 © SCO 0 t 0 t0;(U �", ow aim ":",,,,,w.',' ,r� reit '��. ur iv qv ift — V 0 0 3 O i' M r W o , .- , ,_ o v d 10 N 0 'o M rn -w • o (O i 03 " N- _ co • co nN m 05:a:::,.:(1) 1 0 (U 0 © D _ co cO •`fib ,(U t itoinl 5� r+ N eiiNct +rly y, s,' ` N 0 N N _ -� # pc :.e'er ,�tµ2 ' LL O $� - o ' 61 0 NI m 0 `0 .s `*� LO 3=UJ O N u 0 `[ N ' , L atisl 2 AtT ¢ f .� © d„y"M br iy Ji �� t O F vt E. < • 0 C 0 r3 0 W 0 , N h O d. (r• 414 i CO !..4t-ii i< • • o CG`y N M C y, o _ ( 4,300°,2 .� CO ,O M r ... r l() axe Q) > V so N q ?� �� it,1 #A1 114N'71.4 104 0_ LA um cel O s� 1 A tA .110 : ^�U co ,o L ="tea U N Q 1 2 �� L ; O m 2 w w i 1 ,*, ° ::44;-„i ct '''' ^ ea O w L t i L a O `y Stormwater Management Overview: Pre-Dev Land Cover Map Pre-Dev Old Trail Mater Plan Sheets Post-Dev Land Cover Map Master Plan Post-Dev Design Sheets Post-Dev Drainage Area Spreadsheet Post-Dev HydroCAD Calculations Summary c,...� .. ..., .. \ \ \ \ \ I • li • to ■ co — -- 1 t • • ...• , .\ \ \ \ N ,-. ....:,‘"N- s, N \ \ (.3'. p:1 0 \ , ../ D ...__ . co EN O �i i 1 t :\ \„2---_..1,-.,", t /_ _...__... . .. _. •• z 1� Lipoie y.--. ,, _ ) 1 iii t -1-___ ___I: p I v v vv \ ' Ili-,,5,' gg �� ^� I I / _4/ \\;\\- �. • 1 I� \ \ \\ \ 111 p\rec[h :ic iilterA t] �\\ I t J= \� T l 1 { I -- / ): t ��• / \ I I 1 : \ rod -\ \. \�_"--r-� - Roo D-�t�_��_��_�1,----_��_. - a l-I 1 1 1 I \ \. w\ \ B RO IF 1 I\ 1 I � � l/•.r t1 \ • I J 1 \/ \\ \\ I T,ST via dein \` \\. a'; O ,'' I ; 1 6,,• . Total\ '1-1 t 1 \ \ 1■1 � �1 I I II 1 11 1 ` I , c \ I / 1t . I11 '/ 'v• : � 1 / v x, 1 I 111,2oa sF�otal v y\� I 1 It .fI �,• / A i ® i 10,02 SF MP. , 1 ' I 1 1 T • '\ •• ••L'''.'•±_'.t.-, 1 \ S1 /1 / / 1 \ `--1'.,- ! 1 I I' \ { 1 1 1 • ' ' , , IN I 1t ♦ • r / \ 1 1 � .. O O zv \ 1\ I 1 11 • • 1\\,....7, \\ i 1 / / /: /1 . / , ! 1----..., p OI - I 1 \ l 1 I 1 ).2 7°1 I i I I \ \ \ \v \I I 1t . . • B2ST21 I I111\ \ I \ t i I J t` n ! ,/ 1 \ I • 1I t III' ro °go Vf • t 1 a , N \ I 1 I 1 I� I , , I i •.� t 1 f .-r---:,,,,,,. ! n y • \ V I I 1 llt f t rr� I _ ` i t1 \I . �. (DOI I/ II • i 1 °• ��i/ i`.f : 1! r� � ' � 1♦ A1` ■, j1\ I F , � / :I It i \ fn 0 A' \ �' , i \B3 ROIOF:T o Roof lira; \ \ / I./ ' 11 III I / • \ \ \ \, \ \ ••••"".• N \ 10,044 SF Total \ \\ / J I■ —- I 0000.FIMP.\ \ \ i q i t 1 i i . . \ \ \ ) ' , , , 1 t 11 { A\ c\ -, Lt, V A A i1 I "V...SFTottal \1 t t 1 1 t ( . . \ \ 1 ,**&,,..., „., i 4,",, ," ,•,• (.,4 ' ., , on , • , •„1-1--t_lci 1._ =111 1 dr40. .LI pv — �� yl• -. / I ♦ . 1 v v \ . L '. '489$F IMP. , / 1. / o / 1 i t 1 \ I \ 1 \ \ : 1 1 i ;�\ - ` ,~1,_ �. _ _ �, _11_)1\*l,_ _, _ _ _ _i,_,r_ , ``�= '_I I 1 I4. y�/ 1 1 1t. 1 ' - 1 1312 S�'Total -� -'�` �/ /, 11 li I / I v\\ \\t. � — \ 6`9. i*, grip— .s t \ ) ,\ \ ■� 7, a� �L_r— 1 f 1 ,t i I 1'i \\ o w..1 t ❑, 1 13 ROOF\.\ , '• h.3 S , - 1 To\ST-5 vta.)toof Dra‘N I1"/' 1 1I ! \ •I! i 4I r .\ 1 \ � ` 1ro-yy/ ( 11\ \ _ 1 \ 1_I� A • '26 SF tat \ v 1 I'M I t I ' N/ \ . Q. „��. (tom S. ,:I� ` I 1I Ir / \ �\ \ \ \n \ 7e,GwJi� ��i11; I , so • • .\ t 1 I .\ \ \ ` 1 \ No,` � � \S \ �..�' ■1si /i _A., -- 1111111w . -.., -----______ .. • ,,,--\ ..,, n.....c,. ,-.,,,,.. ..., ,.. i ail ''- /1 I= • ,.. ... /Y�.,---._1 '..:\ ,�,\ \. row• `` \ .' . \\�\ ° ...�.�. \\.. 0 4. \ r-/ EN' , -c •• i • \ '4,, \ 's,V\ V 11111 ,,\ , •iillilli 111 , ---. ...... ,., a VI r , i 1 i Ail"! i I \ \ e ji ... , . , • CD �\\ I = Z ] \ # I I \ \ \ ,\" N _iia , ...._� 4.- .: \\ \ \ I D CD'\ \ ; 118 \ \ /` \\ ��_ _ 40'; - -.1`., `_.— N N ` \� :/•. \\ '•'/ �� (D \ �°so \ I �1} .71 � ,„„,\ •\ \ y \ ., _ ._- ��\� .k \ .-�._� \ \ Iit \t ,a \.s'' \ \ I :, • \ ..... ... -.... •-•:....::::-*--- ---.... \ \ \ \ \\\\\\ 1 \ \,,,,, \\ • evem ,i _ ....?.. ......... . , \ \)) \ \ , 1,==...vorvi.:,._.) . ,1 , h. , `\ -- \ \'- \/-- \• \ \l \\ '1iwaMi��iw 1 \` \\ 1 \j , r11:•..... ,•�.n � O J • \ i\ , / Y / ' \ ' 1- \;•1\\ \ \ \ \� � \ \ �\ \ \ \ o_ \ \ _ ! I •} . . ` •••••/ \ \ \ \\ \ \\ Iti 1 ;III 1111 1 11 I )e: \t \ •` • 1 \\ ket - i //1 \ \ \ I ‘ ,\\% 11 I t 1 1 I i •• �Iv \ \ Jd , 1,ii \ iI • •\ •t \ \ \ /N\ 1�v vvv vI II ' � t ' I l I i . I 1 i • •• •vv.. • v w A v \\ �` '�. `--1 -� vv� /J vv I 1 , • \• I )\ C �\ l\j\h \ x C Y I � 5.el / Q ijr 11 l -i t ; \ \ \\\\\\:\t, % ziX` GO 1 1 c 11 1 1 I ` \ •. `` )\\ \ V A\ I, R° by / /) I— •11 CO In C p I\I11 1 1 I j •\1 .1 \\ \ 1i ,\`,• I lJ J CI Ul Q tl 11 1 1 v 1 1 \ Cil Ui �I cD ;\\ ; t i I • •• •r> 51 \ \ \ I I p � < I I I I m \\\�\\t\ t , r J ., \\ )\ \ \ \ a \ \1 \ \ ,t• \ > \ \ I 1 • I M U) U) C • • • \\\. - \ � 1 • 1 \ I\ \ \ 1 I \ I ■I C7 D N) W D \` \`, \\ I I \. \ N \ 1 1 1 ` „ !\ 0 O J D Q +1.\\\\\\\'\°\\\\\\\\.\\ \�\�\\\\\\\\\ It \ V� \\ ! II t \ I , CD D -• \ \\\ \� \ \\... �.,) \\ 1 ) / / : • \ 1 ii l I \ \ \ \\\\ ` \ /'• '\\ X1 I/I/ /\ j f1 /I II I i Pill I \1 \ T. '. • \ ir)r/ 1 `, N) I 0 0 0 C C C 3J �7 U) ( C H U) U) U) U) U) w B- a- a- Structure 6) 1 01 w N -L. co 60 u, co ry c 1 Number W N -1- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 co n) u.) W W co W co W W c, c;.) w C C C N Inlet Type co > co w m 0 w co 0 m W 03 0 H H H o 0)01 o o CO CO o o CO o o CO W A .C co Curb Opening CD CD CD CD CD 0 0 CD CD CD CD CD CD CD CD O -� o in w Co w :A - o N N iv iv "co 11. iv N A Catchment Area 1 W 4 CD 4 CD 0) Co 0) (n 4 Co 0) - - W .--- CD CD O CD CD O O CD CD O CD 0 CD o CD CD (9 bib CO CO OD 0 - Co w ib v cr, Runoff Coef O — N A N CD CO N -1 0) - A A CO 0) CO r— v 0 CO CD CD CD CD O CD 0 CD CD CD CD 0 CD C. 0 O A N N N W 1 O N 1 N A N N W 1 0) CA .r. 0) W CO 0) OD N W -.1 O CO CD CD N A 0) CO (n 0 0) A C) 4 0) A C) A 0) A 0 A 0) A 0) A 0) A 0) A C) A o) A o) A C) A o) A C) A 53 o, I n t e n s i t i.nov, oi.noi.nou, 6cn6vv 0, otno , o , oinov, oin60166-, oino y 3 ca _ CD O O N -- N.) -+ 0 0 0 0 1 0 -+ 0 l 0 N l --+ O l 0 N 1 0 N A N •,I NI 00 1 C) O �l 1 0 N Co U7 A N W Co N •�1 N �1 C) C) A O in CO W 1. 1 �1 °. co N3alCO101CnN0000101 CO 1 WC) 00C1 V �I00N110) 00vC71 - 010 U OCatchment _ -+ CO - -+ -1 N CO 1 00 0) (J) CT1 01 A N 0) 0 0 1 0 0) CT7 0 N N CO CS, CTI A 00 1 CO = 0 O On 0 O O o 0 carryover Wo 3 10C O O N 1 1 N 1 0 0 0 0 1 0 1 0 1 o N 1 1 0 1 o N 1 1 0 •A N -.I v CO 1 O) O v 1 O N W Cn A N CO CO N �1 N v 0) 0) A Co Co Co W A 1 -.I n 1 0 Total 0 N (n 00 1 CD 1 Cn N CO CD 01 C) CO 1 W 0) CD 0 (J1 ---.1 v W N 1 1 0) 1 v 01 A Cu CD Ci) = - CO 1 1 1 N CO 1 CO 0) CTI CT) Cn .A N 0) CD CD 1 CD 0) Cn CD N N CO CO Cn A CO 1 CO In CD CD CD CD CD 0 0 0 0 0 CD CD 0 CD CD CD CD CD 0 0 CD CD CD 0 CD CD 0 CD CD CD CD CD O 0 b 0 0 0 Co 0 0 0 0 o O o 0 0 o O 0 0 0 0 b 0 0 0 0 0 O 0 0 o N Mannings N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C) 0) O) 0) 0) 0) 0) 0) 6) (3) 0) CT 0) 01 C1 0) C7) Cr) 0) 0) 0) C) 0) 0) 0) O) 0) 0) 0) 0) 0) 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 io 0 0 0 0 0 0 0 0 1 Gutter slope N N N N Iv N CO CO A A ry N W W N N 4 4 4 A A 4 4 4. 4 A W W W W 1 1 — 0) U, Cn 01 Cn Cn 01 CO CO O O 01 Cn CO Co 0 0 0 0 0 0 Cr) 0') O O O O O O A A 01 U, O O O O O O O O O O O O O O O O O O O O O O O O O O O CD O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Pave X-slo A 4 A A A A N N N N W W N N N N N N N N 1 1 N N N N N N N N N N -- A e p 0 0 0 0 0 0 0 0 Cn Cn 0 0 0 0 0 0 0 0 0 0 (n 01 CP 01 Cr! Cn 1 1 1 1 0 0 CD CD CD CD 0 CD CD CD CD CD CD 0 CD CD 0 CD 0 CD 0 CD CD 0 CD CD CD CD CD CD 0 CD CD 0 000000000000 *CD 000000000o000000000 Gutter X-sl0 e co co Co Co Co co Co Co CO co Co co CO Co Co CO co co co co CO Co co co Co co co Co co CO 01 Co Cn P W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W 1 1 1 1 ? N Total Gutter -, 0 00004 °) Spread 0 co 0 0 0 0 01 01 1 1 j Depth„ at Curb D 0) CD FiT 1 1 1 1 J. 0 O OO O00 O 0 0 0 0 �” o 00 % Efficency G) 0 0 0 0 ° .c,,,,, C1 CD O O 0 0 1 0 O - CN„ W C) 0) CO O intercepted 1 Co N C) -1 0 O O o 0 0 0 O 0 p p p0 0 Bypassed O O co O co O co co O O 0 O O O O O O O O O O CD O O O O O O O O O O N 1 N 1 -L1 -� .-..k. N N 1 0 • N 1 N •1 •1 •1 •1 O• •N •N •N •N •1 1 �' N Midpoint Depth 03 Co 0 A A - U1 CO CO N --+ CO O -1 O V CO 1 CO (0 W CD (.71 1 C) N `l � 0 � 00000 0 � � 00oo0o0oo � � NCHIt ii0101010 ( ( ( ( iri iurbeghCO CD CD rn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cn W W N N N W N 01A N 1 A W A W W N N 1 A W 6.1 A W N r`) D/H 0 O) CO CO CO CO W CD (n N 01 1 CO 1 4 CD CJ O) N 0) CO U1 CO CD N N 4 co CD 07 W A CO 0) A Cn 4 1 -+ A W 1 1 1 1 Cn GNI CT) CO A 1 �I A CO CTI 'op i010C1is) 'cc w (.0 :ACflCn v, IA0NCnU, a) oobwb1i0 = V, Midpoint Spread 01 N (11N --...1CO (71 03 1 0) 1 CO v W CD 0 1 .A CO *J 0 W A .A Cn 0 `� = z m7oTl7o �77JJo --L O o as- � � _, c�n00 DJ L. -i � --I �i �I _i � �i _I _i HH 1 (D o 1000000 3 -I -i J c n J _ N J Cn A N W O J CO OD GJ A cn N H . 2 O 0 0 0 0 0 -, o co, co D o cl) . � DOOOD (i) cncn °� cncnccncn - c: c: :7 DJ -i � -I -I n (4 (4 ND -i --I -I -I cp N o � 71 Co W A W N oA OAD = 5J 63 -` O co 60Cn A A co 0 N � = O o 0 0 0 0 0 n O O O o 0 o O O o 0 O O O 0 0 n N N N N CO -+ N) CO n > (D , A A A A W W J A GD O N A Cn J A W n > A) N O 0) co O 01 co s (n O co CO 03 A A O) 0 J W A W N CO H. S (7 ° D 0000000 C) � u) 00 000 O 000CD O 0 00 C) DJ CoCo 'CO CO CO b W A ° CO .CO CO OJ 'co OD OD OJ 0) J A (OD 0 0 A A CO Cn J - O O 1 01 CD N N N CD 01 N J O O CO A O 0 C CD 0 0 0 0 0 0 0 > D o 0 0 0 0 o O O o o 0 0 o o O D - 1 N -+ N -+ N Cn ,F O O � � � � A W A W N N W W W O N W A ) W U1 O 0) J CO (J) CO CD 0 C 3 -� Cn J CO 0) C ) - N -1 J o O 1 Cn 0 C) (D . (3- CnCncn01cnCnCn H H �__ - J Joo O c) 000 J 00 00 DC) O O Co O O O O J ° ° A O Co C3) N N J W W O Co 0) A O 6) O O 0 0 01 0 01 0 0 5 CET a) N -• J o) CO OD O N CO J (n 0 1 U1 Cn n in XI a) O m O Cr)0101010)Cr) C3) 0) Cr) -' H _'' Cn 01 Cn Cn Cr' Cn (n Cn Cn Cn Cn 01 (n Cn Cn H H ODco 'co0 � 00 'co co 3-- ° civ N) - 'co 0 0000 1 10 101 J o ° r (n Q) - O O) C O CO Co 0 CD 0 0 0 0 J J CD W 0 0 0) v ,�. - 0 a - E N (n O J n m -I 0) N POD PPP O 0000) OD pp pp - ' -1 CO W N A W 0) 00 I,J CO O ° _ = an J J J of Co Co Co Co Co J J Co J Co co O N O) CA N O (0 J * D' CO (Q < CO CO CO J J CO - - - - O (n -4 J Cn 0) 0 0 C `"`< 3 � CD 0 � v CD (3) CD a) (3) o) (3) ° K (n 0 > — -I (D) CO CO CO CO O O < X) U1 C7 N (J) cm 0 co co CD O) rl A J -+ A N N 0 W (J1 Na (3) N n m p CO O O O (n A o A CD CD CD CD CD CD CD O m , N �! 6 N 00 b) In �I j A 00 .CO �I 61 A 1 bo A W co O 0 0 CD 0 0 0 0 « CD 0 O O v .( -4 CD (Co (0 oD (fl w A cn co UI CO O N v v — a) 0 C) cn 0) 0) (3) OD o) (3) O) n a) a) a) a) a) a) a) a) a) a) a) a) a) a) (3) a) a) a) a) a) a) p ca a) J J J J OD CO < C7 A Cn a) 0) O J Cn O) 01 O) a) O) J J J J J J J J J < N Cn J A A J O A J m 0 - O A CO A C 0 J (3) O) CO W a) N O 0 J J W A A O) O O � O O (n O) N O O O C Q) 0 0 0 0 0 J O 6) O W O O Cn O Cn O Cn CO -- Cn O O 0 O O (D (3) O O O (7 -. -' 0 0 0 0 01 O W O O O O 0 O O O O O O) O O 0 (D Qo < O. < < 0 O w I I , I N 3 r Cl) , a) a) a) a) a) a) C3) a) a) a) a) a) a) a) C3) C3) O) a) O) O) a) J = N N Co CO N N N J CD m A Cn 01 a) C3) J O) O 01 Cn C3) C3) C3) J J J J J J J J < 0 r► C = Cn CO OD W J Cn cn a) W W W N N O O O N CO A A J 0 0 0 0 0 0 0 Cr) 1.\3'4='; (1: CD CD (n O 0 O CO O Co an O Cn N O O N N Cn O (D W O O J m * ���.�rtrtrt OO O O O 0 O Cn Cn 0 0 0 O 0 CD 0 CD CD C3) a) O O Lei CD rn 01 W W W W A W Cn - (D 01 CO 01 CO A A J A N 1 J W 1 1 a) 01 OD N A Co U1 f-' < W O) O CO CO (n J N J J CO CO W J O CO J A CO J J CD m A A O Cn N W Cr) J \ O W N ° \ \ \ \ \ \ W o 0 < '-'. O O O J N O O CO O •O J W N N O O O CO cn J N N--Co o o 0 0 0 0 o Cl) 0 01 0 CD 1 CO J O A J O O CO J CO -` N CO O J -L (D CDD 4 CD O N A N N A A O J Cn W CO N J N O O N W � • m Co J o Co -+ A Cn 01 J W Cn A J N GJ O A Cb a) W Cn J o oo co co co Co co IX) A (D A W co J W A J W J O) W J a) O 01 N CO OD 0 CO o ° D. E' CD \ '° \ \ \ \ \ \ \ \ \° \ \ \ \ \ \ \ \ \ \ o (D , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CJ - J •N N N •J N 1 O m _. J _. .� J J -. J J J J ^ -D OJ W W W W W W (n a) a CO CDD A CO 01 Cn Cn (n CO Cn Cn Cn Ut U1 Cn Cn co 01 Cn Cn Cn A -0 op J J J J .-4- J — O CD CD (D m ^ o J A J J J J J J J J J Ut A A A A A O J �. (D O) v Ln W O W W A J A N V N (C V co W (JI (J) CO N J 0— C O J J ND iv 'cn v CD W C O 0 01 CD N O W O) 00 N W (00 O a --+ O A CO)) v CD n (-°D m 1 O O J J 0 0 0 0 0 Co Co --` -+ J Co J J N (n Co 4, co J Co Co A a) O J Cn CO 9 01 CO J (n A Co J J \ -� o (b CO CO a) J CT1 A J 5 S C. O v 4, A CO 6) O � -J N 6) Cn 1. Cn (0 Co A G) 6) 6) CD (n_a' 0 = -n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o ° 1 . 1111 0 -k O N J W O N O - _ _ 3 N CW J J CO CO --L J W CO N U1 O J J CO J 2 l-. D CD ox p ci d .-r 5 AAt:::. , t A o ler N N N N W1 w Q O * 00 P N y as ar w W .i!",', In u!: ...1 03. as ,7,:',;, , r- 5 0 um w txt ► to to m Q ,4. { J° r 40, 0 •OoOQ „ ( � N o O :b o o o F O • W sn- o o o c cn Q- — : - t G D Q x O : O O %,„ c� El- /�� `/ . m N IV m II N . , m n * W = .r 0 o ,c,_--0. o O o o. O cQ z 0 P; es m Z N N W X71 N rr N o w n 0 2 so `G II 0 44 5 O 'rte p . Mr O O � O � � 0) a o a E sas O. 'xy O C pis e ; O dm _ m to rw w es IS • • AreaB7 irdI " AreaA\ liArea C iss 7F, BIOFILT R B BIOFILTER C BIOFILTER 11 R o/3 AreaE • et,,7 Area D BIOFILTER E BIOFILTER D TOTAL RUNOFF TO CREEK •• Reach jjj Link Drainage Diagram for Old Trail Post-Development 10-2-17 Prepared by Shimp Engineering, P.C., Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC us Old Trail Post-Development 10-2-17 Type 1124-hr 2-Yr Rainfall=3.71" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 2 Subcatchment 1S: Area A Hydrograph z ■Runoff �. Type II 24-hr 2-Yr Rainfall=3.71" 2- Runoff Area=22,497 sf Runoff Volume=0.131 of Runoff Depth>3.04" LL Tc=5.0 min -� 1 CN=94 1111 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Subcatchment 2S: Area B Hydrograph ■Runoff 121 Type II 24-hr 2-Yr w 11- Rainfall=3.71" 10- 9] Runoff Area=132,307 sf a- Runoff Volume=0.668 of Runoff Depth>2.64" �- Tc=10.0 min CN=90 r. 4-2 3- 2� rr 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 r Time (hours) rr Old Trail Post-Development 10-2-17 Type 1124-hr 2-Yr Rainfall=3.71" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 •• HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 3 Subcatchment 3S: Area C Hydrograph •Runoff " Type II 24-hr 2-Yr Rainfall=3.71" Runoff Area=13,652 sf 1- Runoff Volume-0.069 af Runoff Depth>2.64" 0 LL Tc=5.0 min -� CN=90 .r o r 0 , ,,,,, ,,, 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20• 21 22 23 24 Time (hours) .. Subcatchment 4S: Area D Hydrograph ■Runoff 6- Type II 24-hr 2-Yr 5- Rainfall=3.71" Runoff Area=50,030 sf Runoff Volume-0.291 af Runoff Depth>3.04" +` 0 3 Tc=5.0 min CN=94 2- 0 1- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 - Time (hours) or o r OS w IMO MIK MINI ri. Old Trail Post-Development 10-2-17 Type 1124-hr 2-Yr Rainfall=3.71" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 4 Subcatchment 5S: Area E Hydrograph / ■Runoff 16.72 cfsas I 411 Type II 24-hr 2-Yr 6- Rainfall=3.71 " Runoff Area=68,105 sf Runoff Volume=0.320 of 4- Runoff Depth>2.46" ° = Tc=5.0 min LL 3-, CN=88 2- 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Reach 11R: OUT 3 Hydrograph ■Inflow 3.31 cfs •Outflow Inflow Area=3.351 ac 332 cfs Avg. Flow Depth=0.37' Max Vel=8.40 fps 24.0" 8 Round Pipe 2 n=0.013 " L=50.0' S=0.0400 '/' Capacity=45.24 cfs 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Old Trail Post-Development 10-2-17 Type 1124-hr 2-Yr Rainfall=3.71" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 5 Pond 6P: BIOFILTER A Hydrograph / ■Inflow 2.59 cis ■Primary Inflow Area-0.516 ac Peak EIev-684.12' 2 Storage-1 ,420 cf U 0 LL 1_ 1 0.94 cfs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Pond 7P: BIOFILTER B Hydrograph / ■Inflow 13- 11.79 cfs I ■Primary 12- Inflow Area-3.037 ac " Peak Elev=673.72' 10- Storage-9,934 cf 8- o 7- 0 6 LL 5- r 4- 3-- 12.58 cfs 2- 0 m , 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Old Trail Post-Development 10-2-17 Type II 24-hr 2-Yr Rainfall=3.71" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCADOO 9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 6 Pond 8P: BIOFILTER C Hydrograph / •Inflow i 1.43 cis I ■Primary Inflow Area-0.313 ac Peak EIev=669.15' Storage=512 cf 10.84 cfs rV� 440 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Pond 9P: BIOFILTER D Hydrograph ■Inflow 5.75 cfs •Primary 6 Inflow Area=1 .149 ac 5- Peak EIev=660.57' Storage=3,406 cf 4- N _ V o 3- L 1218 cis 2- 1- . -1-- 0 . 0 1 2 3 4 5 6 7 8 9 10 11 12 1k3 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Old Trail Post-Development 10-2-17 Type II 24-hr 2-Yr Rainfall=3.71" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 7 Pond 10P: BIOFILTER E Hydrograph / •Inflow 1672 cis I ■Primary Inflow Area=1 .563 ac 6- Peak Elev=652.67' Storage=4,050 cf 5- - 4_ o o LL - 3-. 12.20 cis 2- 1- r 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Link 12L: TOTAL RUNOFF TO CREEK Hydrograph ■ Inflow 11 8.64 cfs I Primary 91, Inflow Area=6.579'8 64 °'S 8- 7 � 67 U) _ o - LL 4-- 31 2- 1- 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ,,. Time (hours) Old Trail Post-Development 10-2-17 Type II 24-hr 10-Yr Rainfall=5.58" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 8 Subcatchment 1S: Area A Hydrograph •Runoff 14.03 cls I 4 Type II 24-hr 10-Yr Rainfall=5.58" Runoff Area=22,497 sf 3- Runoff Volume=0.210 af Runoff Depth>4.88" LT 2- Tc_5.0 min CN=94 1- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Subcatchment 2S: Area B Hydrograph .. 21 ❑Runoff 20 119.22 cfs I 19 Type II 24-hr 10-Yr 18 17 Rainfall=5.58" 5 Runoff Area=132,307 sf 3 Runoff Volume=1.121 af ;? Runoff Depth>4.43" ° 10 Tc=10.0 min LL 9 8 CN=90 7 6 5 4 3 .. 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Old Trail Post-Development 10-2-17 Type II 24-hr 10-Yr Rainfall=5.58" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 9 Subcatchment 3S: Area C Hydrograph •Runoff 12.32 cis I • Type II 24-hr 10-Yr 2 Rainfall=5.58" Runoff Area=13,652 sf Runoff Volume=0.116 of Runoff Depth>4.43" Tc=5.0 min 1 CN=90 0 0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Subcatchment 4S: Area D Hydrograph 10 / --- ■Runoff I B 95 cfs I 9. Type II 24-hr 10-Yr 8 Rainfall-5.58" .114 7 Runoff Area=50,030 sf 6- Runoff Volume=0.467 of Runoff Depth>4.88" 5 2 Tc=5.0 min 4 CN=94 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Old Trail Post-Development 10-2-17 Type 1124-hr 10-Yr Rainfall=5.58" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 10 Subcatchment 5S: Area E Hydrograph 12: •Runoff 111 18 cis 1 11_ Type II 24-hr 10-Yr 10- Rainfall=5.58" Runoff Area=68,105 sf 8= Runoff Volume=0.550 of Runoff Depth>4.22" ° 6= LL Tc=5.0 min 5 CN=88 4- 3 2 1 ' .. 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Reach 11R: OUT 3 Hydrograph ■Inflow 18- 16.32 C S ■Outflow 17 Inflow Area=3.351 ac 116.50c1s 15 Avg. Flow Depth=0.84' 14-3 Max Vel=13.26 fps 13_ 12J24.0" "3 Round Pipe u 10 r 39- n=0.013 O LL 8- L=50.0' 7A 6= S=0.0400 '/' 4_ O' Capacity=45.24 cfs ► 3- tee a 2 _ 1-_ 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Old Trail Post-Development 10-2-17 Type II 24-hr 10-Yr Rainfall=5.58" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 11 Pond 6P: BIOFILTER A Hydrograph / •Inflow II - 14.03 cis I ■Primary 4.. 13.87cfs Inflow Area=0.516 ac Peak Elev=684.47' Storage=1 ,754 cf 3- a u 3 o E 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Pond 7P: BIOFILTER B Hydrograph / ■Inflow 21 11922 cfs I ■Primary 29 Inflow Area=3.037 ac 18 Peak Elev-674.45' 16 Storage=12,920 cf'15.27cfs 'r. 14 13 `^ 12. V 11 ' 0 10 LL 9: 8- 7= '. 6' 5-_ 4 3- an 2= I 1- 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) I i Old Trail Post-Development 10-2-17 Type 1124-hr 10-Yr Rainfall=5.58" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 12 Pond 8P: BIOFILTER C Hydrograph / •Inflow 12.32 cfs I 0 Primary Inflow Area=0.313 ac Peak Elev=671 .31 ' 2 Storage=1 ,004 cf 0, U 3 1115 cls 0 LL 1 11 47d' 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 411111 Pond 9P: BIOFILTER D Hydrograph AIM 10- Inflow fds5cis j ❑Primary 9= Inflow Area=1 .149 ac 8- Peak Elev=661 .78' 7- Storage=5,235 cf 6 15.70 cfs N U 5 . 0 LL 4 3- 2 + 1- 0 . 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Old Trail Post-Development 10-2-17 Type II 24-hr 10-Yr Rainfall=5.58" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 13 Pond 10P: BIOFILTER E Hydrograph / •Inflow .. 12- I ff.facfs I ■Primary Inflow Area=1 .563 ac 11= 10 Peak Elev=654.06' Storage=7,760 cf _ 3 6- o 5- 4- 3-] 12.47 cis MIN 2= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Link 12L: TOTAL RUNOFF TO CREEK Hydrograph a ■Inflow 28- ® ■Primary 26- Inflow Area=6.579'za'°fs 24- 22- 20= 18= '^ 16- o - 3 14: 0 u 12- 10- 8: 4- AL 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Old Trail Post-Development 10-2-17 Type 11 24-hr 100-Yr Rainfall=9.07" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 14 Subcatchment 1S: Area A Hydrograph ■Runoff II 7 ssaai Type II 24-hr 100-Yr 6= Rainfall=9.07" — - Runoff Area=22,497 sf 5 Runoff Volume=0.359 of 4- Runoff Depth>8.34" Tc=5.0 min u_ 3' CN=94 2- 0 1- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) .. Subcatchment 2S: Area B Hydrograph 36 ■Runoff 34 132.89 cfs I 32 Type II 24-hr 100-Yr111 30 Rainfall-9.07" 28 26 Runoff Area=132,307 sf 22 Runoff Volume=1.986 of / 11 20 Runoff Depth>7.85" 18 �- u. 16 Tc=10.0 min 14 CN=90 12 10, 8- 6 rr 4 2 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Old Trail Post-Development 10-2-17 Type 11 24-hr 100-Yr Rainfall=9.07" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 15 Subcatchment 3S: Area C Hydrograph •Runoff 4 13 95 cfs 1 Type II 24-hr 100-Yr Rainfall=9.07" 3- Runoff Area-13,652 sf Runoff Volume=0.205 of Runoff Depth>7.86" LL 2- Tc-5.0 min CN=90 1- 446. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Subcatchment 4S: Area D Hydrograph 16= 0 Runoff I 14.85 cfs1 ,5- 14� Type II 24-hr 100-Yr 13= Rainfall=9.07" 12 Runoff Area=50,030 sf 11� 10 Runoff Volume=0.798 of 17, ti 9" Runoff Depth>8.34" .. 0 8= Tc=5.0 min LL 7°: 6_ CN-94 5- 47 3= i 2n 0' 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 .� Time (hours) s a Old Trail Post-Development 10-2-17 Type 1124-hr 100-Yr Rainfall=9.07" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 16 Subcatchment 5S: Area E Hydrograph 214 ■Runoff ,m 204. 11941 cfs I 19- Type II 24-hr 100-Yr 18-i-:. 17= Rainfall=9.07" 15 Runoff Area=68,105 sf i4= Runoff Volume=0.992 of 13= i2- Runoff Depth>7.61" 11-E '03 Tc=5.0 min 9= MN 8i CN=88 74 6- 5- ... -5=-.. 4- 3 2 1 as. 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) AM Reach 11R: OUT 3 Hydrograph MO •Inflow 32 liIl Outflow 28.62 cfs 30: Inflow Area=3.351 ac 2899vci5 28: Avg. Flow Depth=1 .16' 26= 24= Max Vel=15.28 fps — 22= 24.0" 20_ i8- Round Pipe a 16- n=0.013 14- L=50.0' 12 I ,o= S=0.0400 '/' 8= Capacity=45.24 cfs 6-' 7 a 41 A_2 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 1 : i1 Old Trail Post-Development 10-2-17 Type II 24-hr 100-Yr Rainfall=9.07" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 17 Pond 6P: BIOFILTER A Hydrograph / •Inflow II ss8cfs ■Primary 7. Inflow Area=0.516 ac 1 6.38 cfs 6 Peak Elev=684.61 ' Storage- 51 ,903 cf u 4- 3 0 I 3 2 1- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Pond 7P: BIOFILTER B Hydrograph a •Inflow 36 32.89 cfs ■Primary 34 Inflow Area-3.037 ac" 32= 30 Peak Elev=675.14' 28=: 26 Storage-16,108 cf 25 67 24= 22: m _ u 20- .., 3 18: 0 LL 16: 14-; A 12- 10 8 6= 4= 2= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 .. Time (hours) Old Trail Post-Development 10-2-17 Type 1124-hr 100-Yr Rainfall=9.07" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 18 Pond 8P: BIOFILTER C Hydrograph ■Inflow _ 5- ®Primary i4.62c,s , Inflow Area=0.313 ac I ® Peak EIev=671 .54' _ 4- Storage=1 ,143 cf 7, 3- U _ O LL 2- 1- A o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Pond 9P: BIOFILTER D Hydrograph / 17 •Inflow ■Primary 16_ 15.34cfs� Is Inflow Area=1 .149 ac 151 14= Peak EIev=662.07' 13_ 12_ Storage=5,903 cf 11: rn 10= 91 o 8= L 7. 6- 5_ 4= 33 2-' A 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Old Trail Post-Development 10-2-17 Type 1124-hr 100-Yr Rainfall=9.07" Prepared by Shimp Engineering, P.C. Printed 10/2/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 19 Pond 10P: BIOFILTER E Hydrograph / •Inflow i 21= ■Primary 2° Inflow Area=1 .563 ac 19= 18 Peak Elev=654.78' 154: Storage=10,192 cf 14= 13= as. 12 11= 0 10-' u. 9- — 8- 7= 6= 5-� - 4= 3= .. 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) Link 12L: TOTAL RUNOFF TO CREEK Hydrograph a ■Inflow 70= ■Primary 65- CUPInflow Area=6.579 ac 60 55- 50- 45- 4-7 40: a 3 35= o a 30- 25-E — 20= 15- 10e 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 .� Time (hours) Sediment Basin Calculations: Sediment Basin HydroCAD Report (3—S) Area C I < 2S > > 9p Area B SED. BASIN B ,Subcat% Reach on. Drainage Diagram for Old Trail Sediment Basin Sizing Prepared by Shimp Engineering, P.C., Printed 7/27/2017 HydroCADO 9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Old Trail Sediment Basin Sizing Type II 24-hr 25-Yr Rainfall=6.83" Prepared by Shimp Engineering, P.C. Printed 7/27/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 2 Subcatchment 2S: Area B Hydrograph 26 •Runoff a �24.15 cts i 24 Type II 24-hr 25-Yr 22 Rainfall-6.83" 20 Runoff Area=132,307 sf 18 16 Runoff Volume=1.429 of / 14 Runoff Depth>5.65" LL 12 Tc-10.0 min 10 CN=90 8 a 6 4 2 a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) a a a y.. a a a a Old Trail Sediment Basin Sizing Type 1124-hr 25-Yr Rainfall=6.83" Prepared by Shimp Engineering, P.C. Printed 7/27/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 3 Subcatchment 3S: Area C Hydrograph / •Runoff II 3 1291 cfs I Type II 24-hr 25-Yr Rainfall-6.83" _ Runoff Area=13,652 sf 2 Runoff Volume-0.148 of Runoff Depth>5.65" Tc=5.0 min - CN-90 1- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) I I I I I I Old Trail Sediment Basin Sizing Type II 24-hr 25-Yr Rainfall=6.83" Prepared by Shimp Engineering, P.C. Printed 7/27/2017 HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 4 Pond 9P: SED. BASIN B Hydrograph / ■Inflow II 2652 cls I ■Primary 28 Inflow Area=3.351 ac 26 24 Peak Elev=673.71 'I23.07cf5 22 Storage=21 ,816 cf 20 18 a N 16� c 14_ LL 12-� 101 8= a 6 4= 2= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) AIM Ole a a a r. Old Trail Sediment Basin Sizing Type 1124-hr 25-Yr Rainfall=6.83" Prepared by Shimp Engineering, P.C. Printed 7/27/2017 OM HydroCAD®9.10 s/n 07054 ©2011 HydroCAD Software Solutions LLC Page 5 Stage-Area-Storage for Pond 9P: SED. BASIN B um Elevation Surface Storage Elevation Surface Storage (feet) (sq-ft) (cubic-feet) (feet) (sq-ft) (cubic-feet) 666.00 870 0 671.20 3,570 11,184 i 666.10 915 89 671.30 3,626 11,544 666.20 960 183 671.40 3,682 11,909 666.30 1,005 281 671.50 3,739 12,280 ,® 666.40 1,050 384 671.60 3,795 12,657 666.50 1,095 491 671.70 3,851 13,039 666.60 1,140 603 671.80 3,907 13,427 666.70 1,185 719 671.90 3,964 13,821 .r 666.80 1,230 840 672.00 4,020 14,220 666.90 1,275 965 672.10 4,070 14,624 667.00 1,320 1,095 672.20 4,120 15,034 667.10 1,365 1,229 672.30 4,169 15,448 ` 667.20 1,410 1,368 672.40 4,219 15,868 667.30 1,455 1,511 672.50 4,269 16,292 667.40 1,500 1,659 672.60 4,319 16,722 OA 667.50 1,545 1,811 672.70 4,368 17,156 667.60 1,590 1,968 672.80 4,418 17,595 667.70 1,635 2,129 672.90 4,468 18,039 667.80 1,680 2,295 673.00 4,518 18,489 me 667.90 1,725 2,465 673.10 4,567 18,943 668.00 1,770 2,640 673.20 4,617 19,402 668.10 1,826 2,820 673.30 4,667 19,866 668.20 1,883 3,005 673.40 4,716 20,336 ` 668.30 1,939 3,196 673.50 4,766 20,810 668.40 1,995 3,393 673.60 4,816 21,289 668.50 2,051 3,595 673.70 4,866 21,773 iii 668.60 2,108 3,803 673.80 4,915 22,262 668.70 2,164 4,017 673.90 4,965 22,756 668.80 2,220 4,236 674.00 5,015 23,255 668.90 2,276 4,461 674.10 5,065 23,759 .. 669.00 2,333 4,691 674.20 5,115 24,268 669.10 2,389 4,927 674.30 5,164 24,782 669.20 2,445 5,169 674.40 5,214 25,301 669.30 2,501 5,416 674.50 5,264 25,825 ` 669.40 2,557 5,669 674.60 5,314 26,354 669.50 2,614 5,928 674.70 5,363 26,887 669.60 2,670 6,192 674.80 5,413 27,426 - 669.70 2,726 6,462 674.90 5,463 27,970 669.80 2,782 6,737 675.00 5,513 28,519 669.90 2,839 7,018 675.10 5,562 29,072 670.00 2,895 7,305 675.20 5,612 29,631 +■ 670.10 2,951 7,597 675.30 5,662 30,195 670.20 3,008 7,895 675.40 5,711 30,764 670.30 3,064 8,199 675.50 5,761 31,337 670.40 3,120 8,508 675.60 5,811 31,916 ` 670.50 3,176 8,823 675.70 5,861 32,499 670.60 3,233 9,143 675.80 5,910 33,088 670.70 3,289 9,469 675.90 5,960 33,681 all 670.80 3,345 9,801 676.00 6,010 34,280 670.90 3,401 10,138 671.00 3,458 10,481 671.10 3,514 10,830 OLD TRAIL BLOCKSS 20 &21 O.P. SIZING 0ESI64 OF OUTLET PROTECTION FROM A ROUND PIPE FLOWING FULL - MINIMUM TAILWATER CONDITION (TM 4 0.5 DIAMETER) 99 ow i. i ...../04, 00 y Ili-1 , Outlet it Pipe 2 Min. _ + 71y� :�r� w� �. LIAr Diameter, AQ �.1I et‘'' r! ill!' . , I , 1.� ! , \' t 1 .r.... .VIII 'll L� �� off' alaQ 1^sI ' I; ���� � � �: o�II��t� �'" iiiiiiiiiiiii -c 0.600 0.k 41,111Z le 50 AQ I I ii• , is� �� �f =,1� 01 1 tF •114 „N"`p� 1111 ti " ii it 11 111 111 ''ii ¢ / PPA. ?pi PR iNM �,� 1 1.14 �II ;1, til,f4. i , %i4 ;,..�1 IM '�� a ,t Irl c,l .i - 4 l i 11 II IIAA w Ir 1 ,„„„,qa t I 11 1 111 L1 1 1.11'111 ,, ;�. ,, r I,I . 11 1 �€ JIILi } s ot tlV 3N, _ t p'!�f 11110 1 -MF � r �,y�1 .+�5��1 I �f�_ _�, t r r1ldliwl I� i I11 1111111 I IIIllhtIi1l 9 1 � �51 "ta'r ftl r I_ at�r ll �1 r ' - ( 1 + IIUe II ,, 1�1�,{iMl,ul 20111�11111111111111 1 1111 IIIIIIl1111I1ti11 a ✓,I' I#' II t+ I' t''• hl' 3 11111141111 411lIll i 111111IIIIIIIII Ilil1 5 10,411111p111 -41 I r ��'1i It lii11111Ii11111-.11I 1111IIOIi[ ,!"'/ •; I t YYY die 1111901i11Mr111P 11111119 tlllt u1.�s" ��y I '1 ''. - .1I 11111111111411111 Mil 11 J1U /11 .111W-, d� l I 1 i 1 1 �I'd -IIIIIii Rut11N.`....tllii14111-1 !7 III1111i11111111fi11£it r1 1h 1 'il11 Ii1 11111 11 • t f r '. 1 1 f 1 ,DL IIJ1 IiilluIIIIQillli Il� 1 +i . :1 I I II1! � •JIM1 2,p111,111 1 11 atom 1111 B I �' i!� t NNNN Anil NNNWWWAi �,1 °/ 111111111IIIIII1rHILIIIIII1111 1 ' I t• Y, rdl , H MOM! 1 1 1 I �{ 1 i; I i,�t j}- , 1 1-1 1. y �3 l 11 y 9 H Mg iti111fi111i11111i Ii I 1�� �! i+ I 1IY1E , �1 1�1 1 A ,,,,,. pr � a IIIIIMII i illy��li 11III�IIii i '.,,,. - 1' `i, 'I4.dl Y I m I mem l I 4111 1111k 111 1 1 MINIM 1 11 M did1 '1 l.i F. I�EI�1�1l!�11i111iNr�l1� III C I ` 1. •� ��»' 4* Or ,.;1 I mhiii ihm 931 ii .1,,d I ' „ ?eadi °11�wr1�Pid rig : „id Al I IIf 1. Ilkmil in � re"�" M �pr" 1 .r [1,1' : 1 41 Recommended Min. ii lU II �� ' a P' 0"!�'/' i, v ( IIIA I>I �r 0 3 5 10 20 50 100 200 500 1000 Discharge* ft3/ sec. MN Quo La Do 3Do d50 - (cfs) (ft) (ft) (ft) (in) CURB CUT 1 1 .15 6.0 4.00 N/A 6.0 .1. CURB CUT 2 2.35 6.0 3.00 N/A 6.0 CURB CUT 3 1 .62 6.0 3.00 N/A 6.0 OUT 2 13.18 14.0 1 .50 3.75 9.0 OUT 3 16.70 8.0 2.50 7.50 12.0 MS OUT 4 4.74 6.0 1 .25 3.75 6.0 11111OUT 5 1 .88 6.0 1 .25 3.75 6.0 OUT 7 3.18 6.0 1 .25 3.75 9.0 - OUT 8 7.19 8.0 1 .50 4.50 9.0 OUT 10 1 .69 6.0 1 .25 3.75 9.0 ..1 um Independent Reports: Excerpt from NRCS Soils Report NOAA Precipitation Report air Custom Soil Resource Report Soil Map a a n 700600 700700 700800 700900 701000 701100 38°3'35'N ,1� r s *•;-.44'0' 38°335"N i,. ,,, , ,,,- ,, . \ ,,,,,,,.' , ‘ „,,,i,,,,,i.":4 ' , ,' \ \\ ' .!;011`;', '''''-'' V -, \ ,,,,,,,.,;,..',;,' '":1'.:,'..:,;;;7-. '''41‘°:''''',1*ot, \\\\'''' ps° 4 , ', \ cr 'firf' ', .'' \if,..,-..- ,...40 ,- ) rN A.4 _,,,.,...00 „.- . .. rN Tr d U -'' * fr . '' '\\ t ''''''''c. 4 � : i ;; rte` 5. F11TiiT ti N N N ''. .111111/1""'' :, 258 -.......„,„, \ ,-.. g Q ` N , C 1 ' a 25 '' ' 8 #"�� N 8 M 7 26C3 Ii ' 3703 :1 i g j N / 8 ,®.- v ' 131'an- - \ \g a V ' \\\\:\\\k‘k S a 1 ` \\"'\\‘k 38°3'3'N 38°3'3"N 700600 700700 700800 700900 701000 701100 a Map Scale:1:2,810 if printed on B portrait(11"x 17')sheet V- 2' Meters a N N 0 40 80 160 /V Feet 240 0 100 200 400 600 Map projection:Web Mercator Comer coordinates:WGS84 Edge tics:UTM Zone 17N WGS84 8 r a _ O C ° O C C 00 — C O .L0-. N O C 3 N 3 N (0 a) O U N a5 a5 f6 as �_ N -O N 3 c co O C a) 0 C y L O '6 N N 3 C "O c ro U U U a) N -00 .° N 3 ° U N O C O` E NE co N a)) "O N E `�_ U (V — C Z (aai c 0 (a .ca 2 � ` l0 U L U of >' N L 0 0 E as 0- m � a) Top M c 3 U c ,- E `� 0 E as C - L N N O L °' N 'C7 cc O 0 L 7 F— a) N C ca 0 N N CO u Z co -O N ' L N Z E)N N 0 E N Q O E O C2 3 a a) 'O "6 _ 'd O O L a� 'n E U .mW m (Ca 3p s > o C i as �/ < a1 a1 0 a) N O 0 °.L (/) U °- C N 0 LL 0 0 L ca N N 0 N C N C 0 0 0 0 Q U O 3 N E 0 U ` 0 0 0 a) 3 0 C O > a) o c 3 a) ` (a 'U C 0 N O U O "O uj > L >i C O a) >` C a5 Q O E �, a) , 0 Z C 0 N a) 3 Cl) 0 'p aS 2 0 0 0 v n N L a) T Q ° Ta) D C C (0 L a) co a) a) L E 'i N 0 O N dp CL E 0 0 CU T o '6 a) 0 N 3 'O E U 0 0 a) 0 N OTS �-.0. E CO Q ° sa .c n n as 0 co Q co c N < CO L a) c •- LO Q a) ° (6 > Z n E a, CL • U (a C (6 C a) ° ° 06 as m ° 03 iti as E �' EL L Tw L a`ai rnv 6 m n) o 0) ami °c >, 2 a) a) N U _ N 0 (6 >, 3 Q) _ ° aL � C .N. °- T a) L 0 c6 N (a O •OU 0 O c c p C F- 3 o c as Z u) w 3 D ° -as st) ° Q03 m o "o n w 3 CO a) j` 0 >' N (/) a) C 3 C 3 C >' () C _ a3 N ...� E E 0 m 3 N 0 a o 0) aEi ) ac) 3 m a) 0Cll .o c o o a) cu .° o .N Q n co a`) m L ami >, N C E N N N U C l'Z J °- N (n a) E a' N ° Cl N 0a a) E 07 3 U N CO CO 3 L 0 o .� 0 a) 0 N > — Z _ a5 C L 0 c .N 0 .o m a 0 a) o as o -v, .0 ° :c a) a 3 0 as a) E (u E F- w E O. N a E v) 5 U 2 n-o Q o F- w (n (n cn 0 O N H 0 .- 0 -t 0 a a) Et a) U L 3 0 0 0) LL r O (/) N N E C > T ' 0 aS 0 0_ O a LL U t m ) N a) C N N o D a) o >, c C 2 N 0 -o U N O- O O J N N 0 t C N in a m E o o a .a T (n 0 (a co N cc CO N N L a a) O C a) N N N 0 a) N v) > O (n a in c a £ D 2 0 n Q 13 ra a) r Z " w N Es 1 / � c to 0 CO ... w -J ^ N 1..� C Q 0 0) N 1 c < a a) c O a) v) 0 c 0 0_ y a ' a N E co 1 aa)) 'E 'c •c m a c,_ m 0 3 o W Q C 7 ... a) ... (n ( 3 a) .V.. O O O OL a OL a o. O a �. _ p :(13 a c N 3 h N N a a) al 0 30 N 0) — C a) >+ N Q (i 3 o > w > > v m a v ac c 0 `w ° Q N u) U) '0 00 m U U 0 0 J J 2 f a a' N N co (n N N w a c o46 �q❑ G - a .:J 6C3( X <> o ad` o o • AN o0 El Q N N I Custom Soil Resource Report Map Unit Legend I. Atbemarie County,Virginia(VA00S) Map Unit Symbol Map ilnit Name Acres in AOl ,, Percent of AQi„ 01.1 4E Ashe loam,25 to 45 percent 3.4 8.1% slopes 25B Dyke silt loam,2 to 7 percent 15.9 37.5% slopes 26C3 Dyke clay loam,7 to 15 percent 5.6 13.2% slopes,severely eroded ■s 36C Hayesville loam,7 to 15 percent 10.9 25.8% slopes 37D3 Hayesville clay loam, 15 to 25 2.7 6.4% percent slopes,severely eroded 77 Riverview-Chewacla complex 3.8 9.0% Totals for Area of Interest 42.4 100.0% Map Unit Descriptions The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more " major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils.On the landscape, +• however, the soils are natural phenomena,and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic .. class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils. Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a SI. particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management.These are called contrasting,or dissimilar,components.They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the ,r contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially dill 10 r. Custom Soil Resource Report where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If - intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas. An identifying symbol precedes the map unit name in the map unit descriptions. Each • description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, s` degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series. Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups. A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps.The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example. An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and .. relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha- Beta association, 0 to 2 percent slopes, is an example. An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be ,., made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example. Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example. 11 Custom Soil Resource Report Albemarle County, Virginia 4E—Ashe loam, 25 to 45 percent slopes Map Unit Setting National map unit symbol: kbc2 Mean annual precipitation: 25 to 65 inches .. Mean annual air temperature: 54 to 59 degrees F Frost-free period: 195 to 231 days Farmland classification: Not prime farmland Map Unit Composition Ashe and similar soils: 75 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Ashe Setting Landform: Mountain slopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from granite and gneiss .r Typical profile H1 - 0 to 10 inches: loam H2- 10 to 19 inches: loam H3- 19 to 24 inches: sandy loam H4-24 to 79 inches: bedrock Properties and qualities Slope: 25 to 45 percent Depth to restrictive feature: 20 to 40 inches to lithic bedrock Natural drainage class: Somewhat excessively drained - Runoff class: Medium Capacity of the most limiting layer to transmit water(Ksat): Very low to high (0.00 to 5.95 in/hr) Depth to water table: More than 80 inches r Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Low(about 3.2 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B an 12 Custom Soil Resource Report 25B—Dyke silt loam, 2 to 7 percent slopes Map Unit Setting National map unit symbol: kb8s Mean annual precipitation: 25 to 65 inches Mean annual air temperature: 54 to 59 degrees F Frost-free period: 195 to 231 days Farmland classification: All areas are prime farmland ,■ Map Unit Composition Dyke and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit. r. Description of Dyke Setting Landform: Fans Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Convex Parent material: Residuum weathered from greenstone Typical profile H1 -0 to 8 inches: silt loam H2- 8 to 43 inches: clay H3-43 to 79 inches: gravelly clay Properties and qualities Slope: 2 to 7 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Medium Capacity of the most limiting layer to transmit water(Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: High (about 9.1 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B rr 13 Custom Soil Resource Report 26C3—Dyke clay loam, 7 to 15 percent slopes, severely eroded Map Unit Setting National map unit symbol: kb8w Mean annual precipitation: 25 to 65 inches Mean annual air temperature: 54 to 59 degrees F Frost-free period: 195 to 231 days Farmland classification: Not prime farmland ■. Map Unit Composition Dyke and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Dyke Setting orLandform: Fans Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Concave N. Across-slope shape: Convex Parent material: Residuum weathered from greenstone Typical profile H1 -0 to 8 inches: clay loam H2- 8 to 43 inches: clay H3-43 to 79 inches: gravelly clay Properties and qualities Slope: 7 to 15 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Medium Capacity of the most limiting layer to transmit water(Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: High (about 9.1 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B MN 14 Custom Soil Resource Report 36C—Hayesville loam, 7 to 15 percent slopes Map Unit Setting National map unit symbol: kb9r Mean annual precipitation: 25 to 65 inches Mean annual air temperature: 54 to 59 degrees F Frost-free period: 195 to 231 days Farmland classification: Farmland of statewide importance ,., Map Unit Composition Hayesville and similar soils: 80 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Hayesville Setting r Landform: Hillslopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from granite and gneiss Typical profile H1 - 0 to 7 inches: loam H2- 7 to 58 inches: clay H3-58 to 67 inches: sandy clay loam W H4- 67 to 83 inches: fine sandy loam Properties and qualities Slope: 7 to 15 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Medium „ Capacity of the most limiting layer to transmit water(Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None r` Frequency of ponding: None Available water storage in profile: High (about 10.6 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B r. 15 Custom Soil Resource Report 37D3—Hayesville clay loam, 15 to 25 percent slopes, severely eroded Map Unit Setting National map unit symbol: kb9x Mean annual precipitation: 25 to 65 inches Mean annual air temperature: 54 to 59 degrees F Frost-free period: 195 to 231 days Farmland classification: Not prime farmland — Map Unit Composition Hayesville and similar soils: 80 percent Estimates are based on observations, descriptions, and transects of the mapunit. "S Description of Hayesville Setting .. Landform: Hillslopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from granite and gneiss Typical profile "' H1 - 0 to 7 inches: clay loam H2- 7 to 58 inches: clay H3- 58 to 67 inches: sandy clay loam .�+ H4- 67 to 83 inches: fine sandy loam Properties and qualities Slope: 15 to 25 percent mis Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: High •• Capacity of the most limiting layer to transmit water(Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: High (about 10.6 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B 16 Custom Soil Resource Report ir. 77—Riverview-Chewacla complex rr Map Unit Setting National map unit symbol: kbf7 Mean annual precipitation: 25 to 65 inches Mean annual air temperature: 54 to 59 degrees F r" Frost-free period: 195 to 231 days Farmland classification: Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season Map Unit Composition Riverview and similar soils: 50 percent Chewacla and similar soils: 40 percent Minor components: 3 percent Estimates are based on observations, descriptions, and transects of the mapunit. - Description of Riverview Setting Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from igneous rock Typical profile H1 - 0 to 12 inches: loam H2- 12 to 35 inches: silt loam +. H3-35 to 79 inches: silt loam Properties and qualities Slope: 0 to 2 percent as Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water(Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: About 36 to 60 inches Frequency of flooding: Occasional Frequency of ponding: None Available water storage in profile: High (about 9.0 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: B Description of Chewacla Setting Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear 17 ISMCustom Soil Resource Report Parent material: Alluvium derived from igneous rock Typical profile H1 -0 to 8 inches: silt loam H2- 8 to 16 inches: silt loam .. H3- 16 to 26 inches: silty clay loam H4-26 to 40 inches: silty clay loam H5-40 to 79 inches: silt loam Properties and qualities Slope: 0 to 2 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat poorly drained Runoff class: Very high Capacity of the most limiting layer to transmit water(Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: About 6 to 18 inches Frequency of flooding: Occasional Frequency of ponding: None iss Available water storage in profile: High (about 11.6 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: B/D Minor Components Wehadkee Percent of map unit: 3 percent MO Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear S INS SW WS 18 as so • as Soil Information for All Uses ell Soil Properties and Qualities The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest.A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality. Soil Qualities and Features Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer.These features can greatly impact the use and management of the soil. Hydrologic Soil Group Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not „.. protected by vegetation, are thoroughly wet, and receive precipitation from long- duration storms. ,,. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: .. Group A. Soils having a high infiltration rate (low runoff potential)when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. iw Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that 1.• have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. 19 Custom Soil Resource Report Group C. Soils having a slow infiltration rate when thoroughly wet. These consist NMI chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential)when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. MO If a soil is assigned to a dual hydrologic group (ND, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas.Only the soils that in their natural rms condition are in group D are assigned to dual classes. 111111 NO MIN +w ea 20 References .. American Association of State Highway and Transportation Officials(AASHTO).2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition. American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31. Federal Register. July 13, 1994. Changes in hydric soils of the United States. so Federal Register. September 18, 2002. Hydric soils of the United States. Hurt,G.W.,and L.M.Vasilas,editors.Version 6.0,2006. Field indicators of hydric soils is in the United States. National Research Council. 1995. Wetlands: Characteristics and boundaries. ■. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nres.usda.gov/wps/portal/nres/ detail/national/soils/?cid=nres142p2_054262 Soil Survey Staff. 1999.Soil taxonomy:A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nres.usda.gov/wps/portal/ n res/detail/national/soils/?cid=n res 142 p2_053577 SO Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/ portal/n res/detail/national/soils/?cid=n res 142 p2_053580 • Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section. United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical is Report Y-87-1. United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nres.usda.gov/wps/portal/nres/detail/soils/ r. home/?cid=nres142p2_053374 United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ +�+ detail/national/landuse/rangepasture/?cid=stelprdb1043084 24 Custom Soil Resource Report United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nres.usda.gov/wps/portal/ n res/detail/soils/scientists/?cid=n res 142p2_054242 United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States,the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nres.usda.gov/wps/portal/nres/detail/national/soils/? +� cid=nres142p2_053624 United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nres.usda.gov/Internet/FSEDOCUMENTS/nres142p2_052290.pdf rr till NM r IN IN los 25 OM NOAA Atlas 14,Volume 2,Version 3 Location name:Crozet,Virginia,USA* '" `+.0 , Latitude:38.0608°,Longitude:-78.7139° ; u'u Elevation:678.23 ft** ) an source:ESRI Maps **source:USGS "R POINT PRECIPITATION FREQUENCY ESTIMATES MI G.M.Bonnin,D.Martin,B.Lin,T.Parzybok,M.Yekta,and D.Riley NOAH,National Weather Service,Silver Spring,Maryland PF tabular I PF graphical I Maps & aerials of• PF tabular .. I PDS-based point precipitation frequency estimates with 90%confidence intervals(in inches)1 J Average recurrence interval(years) Duration- 1 2 15 __IL 10 25 50 1 100 1 200 5001000 J ___ _ __ 1111 5-min 1 0.337 1 0.403 1 0.476 ( 0.537 0.606 0.660 1 0.712 0.760 I 0.819 0.867 +r (0.305-0.373):(0.365-0.445)1(0.430-0.525)1(0 484-0.592) (0.544-0.668) (0.589-0.727) (0.631-0.785) (0.668-0.840) (0.710-0.910) (0.744-0.968) 10-min , 0.538 1 0.644 0.762 0.858 0.966 1 05 1.13 ' 1.21 1.29 ; 1.36 1 ;(0.487-0.596)j(0.584-0.712)1(0.689-0.842)1(0.774-0.947) (0.867-1.06)1 (0.938-1.16) (1.00-1.25) (1.06-1.33) i (1.12-1.44) (1.17_1.52) 1 r 15-min 1 0.673 1 0.810 0.964 1 1.08 1.22 1.33 1.43 I 1.52 1.63 1.71 1 .1(0.609-0.745)1(0.734-0.896); 1(0.872 1.06)1 (0.979-1.20) (1.10-1.35) 1 (1 19 1.47) (1.27-1.58) ' (1.34-1.68) 1 (1.41-1.81) (1.47-1.91) 30-min ' 0.922 1.12 1.37 I 1.57 1.81 2.00 2.19 1 2.37 2.59 2.77 1 (0.835-1.02)1 (1.01-1.24) I (1.24-1.51) 1 (1.42-1.74) (1.63-2.00) 1 (1.79-2.21) I (1.94-2.42) i (2.08-2.62) 1 (2.25-2.88) (2.38-3.10) 1 rr 1 1 1.15 1 1.40 I 1.761 2.05 2.42 2.72 1 3.02 3.32 3.72 4.05 60-min 1 � 59 (2.17-2.66) ' __ (1.04-1.27) (1.27-1.55) (1.59-1.94) (1.85-226) (2.42-2.99) (2.67-3.33)j1 (2.92-3.67) (3.23-4 13) j j(3,48-4.52)! -1111_ 2-hr 1.37 1.67 1 2.10 1 2.47 2.95 1 3.34 1 3.75 1 4.18 1 4.77 5.26 1 (1.23-1.54) LL (1.49-1.87) 1 (1.88-2.35) F (2.21-2.77) 1 (2.61-3.29) (2.94-3.74)j (3.28-4.19L (3.62-4.68) , (4.08-5.36) (4.45-5,94) in 1 1.51 1.83 2.30 II 2.70 323 3.67 4.13 14.60 5.26 5.83 3-hr �L (1.35-1.70) (1.63-2.07) (2.04-2.60) (2.39-3.04) (2.85-3.63) ( (3.214.13) (3.59-4.64 (3.97-5.19) (4.47-5.96)^ (4.89-6.62) j 6-hr 1 1.95 2.36 1111 2.94 3.46 4.16 I 4.77 5.42 1 6.12 I 7.11 I 7.99 1 ' (1.75-2.20) 1 (2.11-2.66) (2.62-3.31)J (3.07-3.89) (3 -4 66 67) ! (4.1775.36) (4.68-6.09) (5.22-6.89) (5 97-8.05) (6_60-9.08) 1 2.48 1 3.00 3.74 1 4.43 5.39 6.24 7.17 8.20 9.73 11.1 12-hr (2.21-2.83) (2.67-3.41) 1 (3.324.25) ! (3.91-5.02) (4.71-6.10) (5.40-7.07) i (6.12-8.13) 1 (6.89-9.31) ! (7.99-11.1) (8.96127) 24-hr 3.07 I 3.71 4.73 1 5.58 6.83 1 7.89 1 9.07 1 10.4 I 12.3 14.0 in j (2.76-3 A3) 1 (3.34-4.15) i (4.24-5.29) I (4.98-6.22) j j(6.06-7.60) i (6.95-8.78) (7.92-10.1) j j(8.957)1.5) !(19„4-13,7)!!!_ (11.7715,6)_ y 2-da 3.61 4.37 5.55 I 6.51 7.90 9.07 10.3 11.7 13.7 15.4 1 (3.254.03) ' (3.94-4.88) 1_(4.99-6.18) 1 (5.84-7.25) (7.03-8.78) 1 (8.01-10.1) (9.05-115) 1 (10.2-130) 1 (11.7-15.3) (13.0-17.2U 13-day ; 3.85 4.66 5.90 6.92 8.39 9.62 I 10.9 12.4 14.5 16.3 erg (3.494.27) 1 (4.22-5.17) i (5.35-6.55) 1 (6.25-7.66) (7.54-928) 1 (8.58-10.6) (9.69-12.1) (10.9-13.7) 1 (12.6-16.1) (13.9-18.1) 4-day 4.08 4.94 6.26 1 7.33 8.89 10.2 11.6 13.1 15.3 17.1 _ 1 (3.73-4.51) (4.51-5.45) (5.70-6.91) (6.67-8.08) (8.04-9.79) (9.15-11.2)j, (10.3-12.8) 1 (11 6-14.4) 1 (13.4-16.9) (148 19.0) 1111_ _11.11_ a- 7-day4.74 5.71 7.13 I 8.29 9.93 11 11.3 , 12.7 14.3 16.5 18.4(434 518) ! (5.23-6.24) I (6_52-7.79 (7.56-9.05) (9.02-10.8)i (10.2-12.4) (11.4-13_9) (12.7-15.7) (14.5-18.2) (16.020.3) 1 5.38 6.46 1 7.96 1 9.16 10.8 ' 12.2 13.6 15.1 1 17.2 19.0 1 1 10-day ! (4.95-5.84) 1 (5.95-7.00) I_ (7.32-8.63) I (8A1-9.92) (9.90-11.7) j (11.1-13.2) 1.12.3-14.8) (13.6-16.4) (15.3-18.8) (16.7:20.7)ji go 1 20 da 1 7.06 8.42 101 1 11.5 13.3 14.8 16.3 ! 17.7 19.8 21.4 y ! (6.59-7.59) 1 (7.86-9.04) ! (9.46-109) l (10.7-12.4) (12.4-14.3) (13.7-15.9) (15.0-17.5) ; (16.319.1) ; (18.0-21.4) (19.323.2L ' 30-day I, 8.66 1 10.3 ; 12.1 1 13.5 15.4 1 16.8 18.1 19.5 1 21.3 22.6 1 l (8.13-9.25) 1`(9.64:11.0) (11.4-12.9) 1 (12.7-14_4) (14.4-16.4) (15.6-17.9) i (16.9-19.4) 1 (18.0-20.9) (19.6-22.8)j (207243) MN i 10.8 12.8 i 14.9 16.5 18.5 20.0 21.5 22.9 24.7 26.0 45-day E � (10.2-11.5) 1 (12.0-13.6) ( (14.0-15.8) 1 (15.5-17.5) I (17.4-19.7) (18.8-21.3) (20.1-22.8) 1!!!_.(21.3-24.4) i (22.9-26.4) (240 27.9) 60-day 1 12.7 14.9 ( 17.2 18.8 21.0 i 22.5 i 24.0 1 25.4 11 27.2 28.4 1 I � (12.0-134) ; 14.1-15_8) I (162-18.1) ; (17.8-19.9) (19_8-22.1) (21.2-23.8) (22.5-25.3) j j j(23.8-26.9) (25,3728,8)_,J26.4-302) OW 1 Precipitation frequency(PF)estimates in this table are based on frequency analysis of partial duration series(PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90%confidence interval.The probability that precipitation frequency estimates(for a given duration and average recurrence interval)will be greater than the upper bound(or less than the lower bound)is 5%.Estimates at upper bounds are not 1 SO checked against probable maximum precipitation(PMP)estimates and may be higher than currently valid PMP values. I Please refer to NOAA Atlas 14 document for more information. 1 Back to Top ` PF graphical dilli PDS-based depth-duration-frequency(DDF) curves Latitude: 38.0608°,Longitude: -78.7139° — 30 i 11 i I i__ i r i i i Ili Average recurrence interval 25 -• (yew) ri 6 — 1 a — 6 • oc 15 — 10 •�, — 25 +Ea — 60 :" i 0 10 — 100 a` --" = 200 500— 1000 _ `� E E E E E ri, A kb N et "o 'o Y7 to 43 47 v 43'o LA 6 u, 6 6 H N r A 4 N 6 6 o LiV 6 Duration 30 I T I I I I 25 ...._ M 20 ---- - a 5-arit — 2-day •c is - -• •-- - - — 1O-rhat — 3-day ail ,a 1 S-a*t — 4-..day d° — 304ain — 7-4Iay 10 -.... — 00irnin — 10-day — 24w — 20-day .. — 3-hr — 30-day — 64r — 45-day - 12-hr 60-day — 24-hr "' 1 2 5 10 25 50 100 200 500 1000 - Average recurrence interval (years) 'ill NOAA Atlas 14,Volume 2,Version 3 Created(GMT):Thu Dec 15 22:18:37 2016 Back to Top Maps & aerials Small scale terrain i i r raze t 2mi - Large scale terrain • Washington, D.C.k \‘' H Lonbury• S La unipn • VIRGINIA I NI A Ric Ind • + • Lyiichburq ef\ a - 100km ' 60mr Large scale map .1 I w.. ton 1-1 Hour FiIIrI Lynchburg k „,,,, Roanoke 100km 107 60mi Large scale aerial